首页> 外文期刊>Journal of Computational Mathematics >IMAGE SEGMENTATION BY PIECEWISE CONSTANT MUMFORD-SHAH MODEL WITHOUT ESTIMATING THE CONSTANTS
【24h】

IMAGE SEGMENTATION BY PIECEWISE CONSTANT MUMFORD-SHAH MODEL WITHOUT ESTIMATING THE CONSTANTS

机译:通过分段常数Mumford-Shah模型进行图像分割而无需估计常数

获取原文
获取原文并翻译 | 示例

摘要

In this work, we try to use the so-called Piecewise Constant Level Set Method (PCLSM) for the Mumford-Shah segmentation model. For image segmentation, the Mumford-Shah model needs to find the regions and the constant values inside the regions for the segmentation. In order to use PCLSM for this purpose, we need to solve a minimization problem using the level set function and the constant values as minimization variables. In this work, we test on a model such that we only need to minimize with respect to the level set function, i.e., we do not need to minimize with respect to the constant values. Gradient descent method and Newton method are used to solve the Euler-Lagrange equation for the minimization problem. Numerical experiments are given to show the efficiency and advantages of the new model and algorithms.
机译:在这项工作中,我们尝试对Mumford-Shah分割模型使用所谓的分段恒定水平集方法(PCLSM)。对于图像分割,Mumford-Shah模型需要找到区域和区域内的常数值进行分割。为了将PCLSM用于此目的,我们需要使用水平集函数和常数作为最小变量来解决最小化问题。在这项工作中,我们在模型上进行测试,使得我们仅需要就水平集函数进行最小化,即,我们不需要就常量值进行最小化。用梯度下降法和牛顿法求解最小化问题的欧拉-拉格朗日方程。数值实验表明了新模型和算法的有效性和优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号