首页> 外文期刊>Computer vision and image understanding >Comparison of multi-label graph cuts method and Monte Carlo simulation with block-spin transformation for the piecewise constant Mumford-Shah segmentation model
【24h】

Comparison of multi-label graph cuts method and Monte Carlo simulation with block-spin transformation for the piecewise constant Mumford-Shah segmentation model

机译:分段常数Mumford-Shah分割模型的多标签图割方法与蒙特卡罗模拟与块旋转变换的比较

获取原文
获取原文并翻译 | 示例

摘要

The Mumford-Shah segmentation model is an energy model widely applied in computer vision. Many attempts have been made to minimize the energy of the model. We focus on recently proposed two methods for solving multi-phase segmentation; the graph cuts method by Bae and Tai (2009) and the Monte Carlo method by Watanabe et al. (2011). We compare the convergence of solutions, the values of obtained energy, the computational time, etc. Finally we propose a hybrid method combining the advantages of the Monte Carlo and the graph cuts. The hybrid method can find the global minimum energy solution efficiently without sensitivity of initial guess.
机译:Mumford-Shah分割模型是一种广泛应用于计算机视觉的能量模型。已经进行了许多尝试以最小化模型的能量。我们专注于最近提出的两种解决多相分割的方法; Bae and Tai(2009)的图割法和Watanabe等人的蒙特卡洛法。 (2011)。我们比较了解的收敛性,获得的能量值,计算时间等。最后,我们提出了一种结合了蒙特卡洛和图割优势的混合方法。混合方法可以有效地找到全局最小能量解,而无需初始猜测的敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号