首页> 外文期刊>Computer vision and image understanding >Application of Monte Carlo simulation with block-spin transformation based on the Mumford-Shah segmentation model to three-dimensional biomedical images
【24h】

Application of Monte Carlo simulation with block-spin transformation based on the Mumford-Shah segmentation model to three-dimensional biomedical images

机译:基于Mumford-Shah分割模型的蒙特卡罗模拟与块旋转变换在三维生物医学图像中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present the iterative Monte Carlo method for solving Mumford-Shah segmentation model in the case of three-dimensional images with emphasis on multi-phase segmentation. The present method introduces iterative descent process to the preceding Monte Carlo method, proposed by our group, to improve convergence. The numerical simulations have shown that the present method overcomes the problem of the preceding Monte Carlo method that converges to local minima in some cases. The computational time of the present method can be shortened by introducing block-spin transformation procedure. We have also compared the result of the present method with the graph cuts method, The comparison has shown that the proposed method converges to almost the same solution of the graph cuts method in reasonably short time, and is superior in memory consumption, especially in the case of multi-phase segmentation. The comparison of the output pattern with the clinical experts' annotation suggests that the Mumford-Shah segmentation model is suitable for a multi-phase image segmentation model of biomedical images. Because of the advantage of small memory consumption, the present Monte Carlo method with the block-spin transformation can be applied to a wide range of three-dimensional images. We make a remark that the block-spin transformation is also applicable to the graph cuts method, which leads to the saving of the computational time while maintaining lower-energy convergence.
机译:在本文中,我们提出了一种迭代的蒙特卡洛方法,用于解决三维图像(重点是多相分割)的情况下的Mumford-Shah分割模型。本方法将迭代下降过程引入了由我们小组提出的先前的蒙特卡洛方法,以提高收敛性。数值模拟表明,本方法克服了先前的蒙特卡洛方法在某些情况下收敛到局部极小值的问题。通过引入块自旋变换过程可以缩短本方法的计算时间。我们还将本方法的结果与图割方法进行了比较,比较结果表明,所提出的方法在相当短的时间内收敛到图割方法的几乎相同的解决方案,并且在内存消耗方面具有优势,尤其是在多相分割的情况。输出模式与临床专家注释的比较表明,Mumford-Shah分割模型适用于生物医学图像的多阶段图像分割模型。由于小的存储器消耗的优点,具有块自旋变换的当前的蒙特卡洛方法可以应用于宽范围的三维图像。我们注意到块自旋变换也适用于图割法,这在节省计算时间的同时保持了较低的能量收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号