首页> 外文会议>CSAA/IET International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering >Adaptive neural network control of two-DOF robotic arm driven by electro-hydraulic actuator with output constraint
【24h】

Adaptive neural network control of two-DOF robotic arm driven by electro-hydraulic actuator with output constraint

机译:具有输出约束的电液执行器驱动的两自由度机器人手臂的自适应神经网络控制

获取原文

摘要

In this paper, an adaptive neural network (ANN) control is presented for a two degree of freedom robotic arm driven by electro-hydraulic actuator (EHA) with output constraints. ANN control is used to estimate the unknown model of a manipulator. A backstepping controller is designed, which ensures the stability of system and satisfies the dynamic tracking performance of EHA, where the convergence of closed loop system is strictly proved by Lyapunov method. Using the control method proposed in this paper, the signals are semi globally uniformly bounded in the closed-loop system, and the output constraints are not violated. The effectiveness of the presented controller is verified in the two degree of freedom robotic arm by the simulation results.
机译:本文针对具有输出约束的电动液压执行器(EHA)驱动的两自由度机器人手臂,提出了一种自适应神经网络(ANN)控制。 ANN控制用于估计机械手的未知模型。设计了一种反推控制器,保证了系统的稳定性,并满足EHA的动态跟踪性能,其中闭环系统的收敛性通过Lyapunov方法得到了严格证明。使用本文提出的控制方法,信号在闭环系统中是半全局一致有界的,并且不会违反输出约束。仿真结果验证了所提控制器在两自由度机械臂中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号