首页> 外文会议>Computer science - theory and applications >Towards a Complexity Theory of Randomized Search Heuristics: Ranking-Based Black-Box Complexity
【24h】

Towards a Complexity Theory of Randomized Search Heuristics: Ranking-Based Black-Box Complexity

机译:迈向随机搜索启发式算法的复杂性理论:基于排名的黑盒复杂性

获取原文
获取原文并翻译 | 示例

摘要

Randomized search heuristics are a broadly used class of general-purpose algorithms. Analyzing them via classical methods of theoretical computer science is a growing field. A big step forward would be a useful complexity theory for such algorithms. We enrich the two existing black-box complexity notions due to Wegener and other authors by the restrictions that not actual objective values, but only the relative quality of the previously evaluated solutions may be taken into account by the algorithm. Many randomized search heuristics belong to this class of algorithms. We show that the new ranking-based model gives more realistic complexity estimates for some problems, while for others the low complexities of the previous models still hold.
机译:随机搜索启发式算法是一类广泛使用的通用算法。通过理论计算机科学的经典方法对其进行分析是一个不断发展的领域。向前迈出的一大步将是对此类算法有用的复杂性理论。由于没有实际目标值的限制,我们丰富了由于Wegener和其他作者提出的两个黑匣子复杂性概念,该算法只能考虑先前评估的解决方案的相对质量。许多随机搜索启发式算法都属于此类算法。我们表明,新的基于排名的模型对某些问题给出了更现实的复杂度估计,而对于其他问题,先前模型的低复杂度仍然成立。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号