首页> 外文期刊>Theory of computing systems >Upper and Lower Bounds for Randomized Search Heuristics in Black-Box Optimization
【24h】

Upper and Lower Bounds for Randomized Search Heuristics in Black-Box Optimization

机译:黑盒优化中随机搜索启发式的上下界

获取原文
获取原文并翻译 | 示例

摘要

Randomized search heuristics like local search, tabu search, simulated annealing, or all kinds of evolutionary algorithms have many applications. However, for most problems the best worst-case expected run times are achieved by more problem-specific algorithms. This raises the question about the limits of general randomized search heuristics. Here a framework called black-box optimization is developed. The essential issue is that the problem but not the problem instance is known to the algorithm which can collect information about the instance only by asking for the value of points in the search space. All known randomized search heuristics fit into this scenario. Lower bounds on the black-box complexity of problems are derived without complexity theoretical assumptions and are compared with upper bounds in this scenario.
机译:诸如本地搜索,禁忌搜索,模拟退火或各种进化算法之类的随机搜索试探法具有许多应用。但是,对于大多数问题,可以通过针对特定问题的算法来获得最佳的最坏情况预期运行时间。这就提出了关于一般随机搜索启发式方法的局限性的问题。这里开发了一个称为黑盒优化的框架。根本问题是算法只知道问题而不是问题实例,该算法只能通过询问搜索空间中的点值来收集有关实例的信息。所有已知的随机搜索启发式方法都适用于这种情况。在没有复杂性理论假设的情况下,得出问题黑匣子复杂性的下界,并与这种情况下的上限进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号