首页> 外文OA文献 >Toward a complexity theory for randomized search heuristics : black-box models
【2h】

Toward a complexity theory for randomized search heuristics : black-box models

机译:面向随机搜索启发式算法的复杂性理论:黑盒模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Randomized search heuristics are a broadly used class of general-purpose algorithms. Analyzing them via classical methods of theoretical computer science is a growing field. While several strong runtime bounds exist, a powerful complexity theory for such algorithms is yet to be developed. We contribute to this goal in several aspects. In a first step, we analyze existing black-box complexity models. Our results indicate that these models are not restrictive enough. This remains true if we restrict the memory of the algorithms under consideration. These results motivate us to enrich the existing notions of black-box complexity by the additional restriction that not actual objective values, but only the relative quality of the previously evaluated solutions may be taken into account by the algorithms. Many heuristics belong to this class of algorithms. We show that our ranking-based model gives more realistic complexity estimates for some problems, while for others the low complexities of the previous models still hold. Surprisingly, our results have an interesting game-theoretic aspect as well.We show that analyzing the black-box complexity of the OneMaxn function class—a class often regarded to analyze how heuristics progress in easy parts of the search space—is the same as analyzing optimal winning strategies for the generalized Mastermind game with 2 colors and length-n codewords. This connection was seemingly overlooked so far in the search heuristics community.
机译:随机搜索启发式算法是一类广泛使用的通用算法。通过理论计算机科学的经典方法对其进行分析是一个不断发展的领域。尽管存在几个强大的运行时边界,但尚未开发出针对此类算法的强大复杂性理论。我们在多个方面为这一目标做出了贡献。第一步,我们分析现有的黑匣子复杂度模型。我们的结果表明,这些模型不够严格。如果我们限制正在考虑的算法的内存,这仍然适用。这些结果激励我们通过附加的限制来丰富黑匣子复杂性的现有概念,这些限制不是实际目标值,而是算法只能考虑先前评估的解决方案的相对质量。许多启发式算法属于此类算法。我们表明,基于排名的模型对某些问题给出了更现实的复杂度估计,而对于其他问题,先前模型的低复杂度仍然成立。令人惊讶的是,我们的结果也具有有趣的博弈论方面。我们表明,分析OneMaxn函数类的黑盒复杂度(该类通常被认为是分析启发式在搜索空间的简单部分中的进展情况的类)与分析带有2种颜色和长度为n的代码字的广义Mastermind游戏的最佳获胜策略。到目前为止,在搜索启发式社区中似乎似乎忽略了这种联系。

著录项

  • 作者

    Winzen Carola;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号