【24h】

OPTIMAL DESIGN OF A MICRO SERIES ELASTIC ACTUATOR

机译:微系列弹性执行器的优化设计

获取原文
获取原文并翻译 | 示例

摘要

We propose using series elastic actuation (SEA) in micro mechanical devices to achieve precise control of the interaction forces. Using μUSEA for force control removes the need for high-precision force sensors/actuators and allows for accurate force control through simple position control of the deflection of a compliant coupling element. Since the performance of a μSEA is highly dependent on the design of this compliant coupling element, we employ a design optimization framework to design this element. In particular, we propose a compliant, under-actuated half-pantograph mechanism as a feasible kinematic structure for this coupling element. Then, we consider multiple design objectives to optimize the performance of this compliant mechanism through dimensional synthesis, formulating an optimization problem to study the trade-offs between these design criteria. We optimize the directional manipulability of the mechanism, simultaneously with its task space stiffness, using a Pareto-front based framework. We select an optimal design by studying solutions on the Pareto-front curve and considering the linearity of the stiffness along the actuation direction as a secondary design criteria. The optimized mechanism possesses high manipulability and low stiffness along the movement direction of the actuator; hence, achieves a large stroke with high force resolution. At the same time, the mechanism has low manipulability and high stiffness along the direction perpendicular to the actuator motion, ensuring good disturbance rejection characteristics. We model the behavior of this compliant mechanism and utilize this model tornsynthesize a controller for jUSEA to study its dynamic response. Simulated closed loop performance of the ;iiSEA with optimized coupling element indicates that force references can be tracked without significant overshoot and with low tracking error (about 1.1%) even for periodic reference signals.
机译:我们建议在微型机械设备中使用串联弹性驱动(SEA),以实现对相互作用力的精确控制。使用μUSEA进行力控制可消除对高精度力传感器/执行器的需求,并通过简单的位置控制挠性耦合元件的偏转即可实现精确的力控制。由于μSEA的性能高度依赖于这种顺应性耦合元件的设计,因此我们采用设计优化框架来设计该元件。特别是,我们提出了一种柔顺的,促动不足的半受电弓机构,作为该耦合元件的可行运动学结构。然后,我们考虑多个设计目标,以通过维度综合来优化此兼容机制的性能,提出优化问题以研究这些设计标准之间的取舍。我们使用基于Pareto-front的框架优化该机制的方向可操作性,同时优化其任务空间的刚度。我们通过研究Pareto前沿曲线上的解并选择沿驱动方向的刚度线性作为第二个设计标准来选择最佳设计。优化的机构沿致动器的运动方向具有较高的可操纵性和较低的刚度。因此,以高的力分辨率实现了大行程。同时,该机构在垂直于致动器运动的方向上具有较低的可操纵性和较高的刚度,从而确保了良好的干扰抑制特性。我们对该兼容机制的行为进行建模,并利用该模型为jUSEA合成一个控制器来研究其动态响应。具有优化耦合元件的; iiSEA的仿真闭环性能表明,即使对于周期性参考信号,也可以跟踪力参考而没有明显的过冲和低跟踪误差(约1.1%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号