首页> 外文会议>Artificial neural networks in pattern recognition >Exploiting Neural Networks to Enhance Trend Forecasting for Hotels Reservations
【24h】

Exploiting Neural Networks to Enhance Trend Forecasting for Hotels Reservations

机译:利用神经网络增强酒店预订趋势预测

获取原文
获取原文并翻译 | 示例

摘要

Hotel revenue management is perceived as a managerial tool for room revenue maximization. A typical revenue management system contains two main components: Forecasting and Optimization. A forecasting component that gives accurate forecasts is a cornerstone in any revenue management system. It simply draws a good picture for the future demand. The output of the forecast component is then used for optimization and allocation in such a way that maximizes revenue. This shows how it is important to have a reliable and precise forecasting system. Neural Networks have been successful in forecasting in many fields. In this paper, we propose the use of NN to enhance the accuracy of a Simulation based Forecasting system, that was developed in an earlier work. In particular a neural network is used for modeling the trend component in the simulation based forecasting model. In the original model, Holt's technique was used to forecast the trend. In our experiments using real hotel data we demonstrate that the proposed neural network approach outperforms the Holt's technique. The proposed enhancement also resulted in better arrivals and occupancy forecasting when incorporated in the simulation based forecasting system.
机译:酒店收入管理被视为实现客房收入最大化的管理工具。典型的收入管理系统包含两个主要组件:预测和优化。提供准确预测的预测组件是任何收入管理系统的基石。它只是为将来的需求画了一幅好图。然后,将预测组件的输出用于最大化收入的优化和分配。这表明拥有可靠且精确的预测系统非常重要。神经网络已成功地在许多领域进行了预测。在本文中,我们建议使用NN来提高在较早的工作中开发的基于模拟的预测系统的准确性。特别地,神经网络用于在基于仿真的预测模型中对趋势分量进行建模。在原始模型中,Holt的技术用于预测趋势。在使用真实酒店数据的实验中,我们证明了所提出的神经网络方法优于Holt的技术。与基于模拟的预测系统结合使用时,所提出的增强功能还可以带来更好的到达和占用率预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号