首页> 外文会议>Artificial intelligence: Methodology, systems, and applications >An Adaptive Approach for Integration Analysis of Multiple Gene Expression Datasets
【24h】

An Adaptive Approach for Integration Analysis of Multiple Gene Expression Datasets

机译:多基因表达数据集整合分析的自适应方法

获取原文
获取原文并翻译 | 示例

摘要

In recent years, microarray gene expression profiles have become a common technique for inferring the relationship or regulation among different genes. While most of the previous work on microarray analysis focused on individual datasets, some global studies exploiting large numbers of microarrays have been presented recently. In this paper, we investigate how to integrate microarray data coming from different studies for the purpose of gene dependence analysis. In contrast to a meta-analysis approach, where results are combined on an interpretative level, we propose a method for direct integration analysis of gene relationships across different experiments and platforms. First, the algorithm utilizes a suitable metric in order to measure the relation between gene expression profiles. Then for each considered dataset a quadratic matrix that contains the interrelation values calculated between the expression profiles of each gene pair is constructed. Further a recursive aggregation algorithm is used in order to transform the set of constructed interrelation matrices into a single matrix, consisting of one overall inter-gene relation value per gene pair. At this stage a matrix of overall inter-gene relations obtained from previous data can be added and aggregated together with the currently constructed interrelation matrices. In this way, the previously generated integration results can, in fact, be updated with newly arriving ones studying the same phenomena. The obtained overall inter-gene relations can be considered as trade-off values agreed between the different experiments. These values express the gene correlation coefficients and therefore, may directly be analyzed in order to find the relationship among the genes.
机译:近年来,微阵列基因表达谱已成为推断不同基因之间关系或调控的常用技术。尽管先前有关微阵列分析的大部分工作都集中在单个数据集上,但最近已经出现了一些利用大量微阵列的全球研究。在本文中,我们研究如何整合来自不同研究的微阵列数据,以进行基因依赖性分析。与荟萃分析方法(在解释性水平上合并结果)相反,我们提出了一种直接整合分析跨不同实验和平台的基因关系的方法。首先,该算法利用合适的度量来测量基因表达谱之间的关系。然后,对于每个考虑的数据集,构造一个包含每个基因对的表达谱之间计算的相互关系值的二次矩阵。另外,使用递归聚合算法以将一组构造的相互关系矩阵转换为单个矩阵,该矩阵由每个基因对的一个整体内部基因间关系值组成。在这一阶段,可以添加从先前数据获得的总体种间关系矩阵,并将其与当前构建的相互关系矩阵汇总在一起。这样,实际上可以用研究相同现象的新到达的积分来更新先前生成的积分结果。获得的总体基因间关系可以视为不同实验之间达成一致的折衷值。这些值表示基因相关系数,因此可以直接进行分析以找到基因之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号