首页> 外文会议>Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019 >Vision-based Precision Localization of UAVs for Sensor Payload Placement and Pickup for Field Monitoring Applications
【24h】

Vision-based Precision Localization of UAVs for Sensor Payload Placement and Pickup for Field Monitoring Applications

机译:基于视觉的无人机精确定位,用于传感器有效载荷现场监控应用的放置和拾取

获取原文
获取原文并翻译 | 示例

摘要

Due to their mobility and autonomy, unmanned aerial vehicles (UAVs) provide an unprecedented opportunity to performdata gathering in a wide array of civil engineering applications such as visual inspection of infrastructure. Given theirversatility, the role of UAVs can be expanded by leveraging their autonomous operations to deploy wireless sensingresources. This can be especially valuable in numerous field applications such as shear wave velocity (V_s) assessment ofthe subsurface. This study explores the feasibility of automating the autonomous placement and pickup of wirelessgeophone sensors using UAVs for multichannel analysis of surface waves (MASW) for subsurface characterization.Typically, autonomous navigation of UAVs is based on the fusion of inertial sensors and GPS to control the UAV flighttrajectory. However, this approach is not sufficiently accurate for missions requiring precision placement and pickup ofpayloads (such as sensors). Hence, computer vision using fiducial markers can be used to augment traditional inertialsensing to add accuracy to the localization of the UAV relative to payloads. In this study, we use a set of fiducial markersof varying sizes as tracking targets during navigation missions. Pose information extracted from the marker images areintegrated into a sensor fusion controller based on the Kalman filter. The work conducts field validation of the proposedcomputer vision navigation method showing accuracy of the UAV landing on a user defined target within 10 cm; as theUAV descends, smaller fiducial markers are shown to increase the precision of the UAV placement on the ground.
机译:由于其机动性和自主性,无人机为在各种土木工程应用(例如基础设施的视觉检查)中执行\ r \ n数据收集提供了前所未有的机会。鉴于无人机的通用性,可以通过利用其自主操作来部署无线传感资源来扩展无人机的作用。这在许多现场应用中尤其有价值,例如对地下的剪切波速度(V_s)评估。这项研究探讨了使用UAV自动进行无线\ r \ ngophone传感器的自动放置和拾取的可行性,以对表面波进行多通道分析(MASW)进行地下表征。\ r \ n通常,UAV的自主导航基于惯性融合传感器和GPS来控制无人机的飞行\ r \ n弹道。但是,对于需要精确放置和拾取有效载荷的任务(例如传感器),这种方法不够准确。因此,使用基准标记的计算机视觉可用于增强传统的惯性传感,以增加无人机相对于有效载荷的定位精度。在这项研究中,我们使用一组大小不一的基准标记作为导航任务中的跟踪目标。从标记图像提取的姿势信息\ r \ n集成到基于卡尔曼滤波器的传感器融合控制器中。这项工作对提议的计算机视觉导航方法进行了现场验证,该方法显示了无人机在10厘米以内的用户定义目标上着陆的准确性;随着\ n \ UAV的下降,显示出较小的基准标记可以提高无人机在地面上的放置精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号