首页> 外文会议>AEC/APC symposium XV >An adaptive Interferometer Endpoint Algorithm for Compensationof Mask Thickness in Recess Etch Applications
【24h】

An adaptive Interferometer Endpoint Algorithm for Compensationof Mask Thickness in Recess Etch Applications

机译:凹版蚀刻应用中用于掩模厚度补偿的自适应干涉仪端点算法

获取原文
获取原文并翻译 | 示例

摘要

Accurate interferometric endpoint control for fabrication of trench capacitor structures is challenging when thernmask layer, usually silicon nitride, can vary over a wide range in thickness from wafer to wafer. This is because thernnitride thickness strongly affects, first, the target etch depth, and second, the periodicity of the optical interferencernfringes used for etch depth determination by the endpoint system. What is needed is accurate mask thicknessrninformation coupled with the ability to adaptively compensate the endpoint control algorithm for both target etchrndepth and lack of fringe purity.rnA fringed endpoint signal represents the cyclic variation of reflectance for a single wavelength through time, arnresult of continual phase change between light reflected from the etch front and the etch mask as the etchrnprogresses. The reflections from the top and bottom of the mask layer can have any phase relationship; if these twornreflections are out of phase for a particular wavelength, then the mask is said to antireflective at that wavelength. Ifrnthe reflections are in phase, then the mask is reflective. Between these extremes there is continuous variation in thernrelative phase of the top and bottom reflections, and hence in relative reflectance.rnIn this work, initial efforts identified that the periodicity of the fringe period of any single wavelength early onrnin a recess etch is strongly affected by the relative reflectance of the mask. Our efforts also made clear that nonperiodicrnfringe signals can have origins in a non-constant etch rate with time; therefore it was important tornincorporate a means of separating these two effects to achieve optimal process control. Further analysis ofrnexperimental data taken from etching samples with widely varying mask thickness allowed us to draw thernconclusion that if a fringe counting wavelength is adaptively selected such that it has a consistent relativernreflectance for the particular mask, then fringe periodicity, and hence fringe counting accuracy, can be dramaticallyrnimproved. With these data, it was possible to construct an empirical functio n relating the mask thickness to thern"best" wavelength to use for fringe counting.rnTo test the approach, an adaptive endpoint algorithm incorporating the empirical function for wavelengthrnselection was developed. Then, a single test run was made on a prepared sample set spanning a wide range of maskrnthicknesses (152-190nm). The objective of the test was to recess the capacitor electrodes of all samples to 30nmrnbelow the bottom of the etch mask. Results reported below are for a number of wafer samples etched with the samernprocess recipe and same endpoint algorithm set within a single, automated run. An advanced feature endpointrnsystem (Applied Materials EyeD-IEP) was used in conjunction with a Silicon Etch DPS? Plus Centuraò systemrnfor the test. The endpoint system consists of a broadband light source2 and CCD spectrograph2 capable of analysisrnacross a 200-800nm range. The endpoint system software utilities2 enabled the measurement of blanket filmrnthickness, storing of the resulting thickness value in memory, and finally, recalling the thickness value fromrnmemory during the recess step in order to automatically modify fringe counter attributes at the appropriate time.rnIn the test, the mask nitride was measured both before and after an oxide removal (breakthrough) step. Thernpost-breakthrough nitride thickness measurement was taken and used with the above empirical relationship torndetermine the optimal light wavelength to use for fringe counting. The optimal wavelength was stored in memoryrnalong with the mask thickness, and then retrieved later on in the recess step to set both the fringe counter attributesrnand the total etch depth target (thicker mask = larger target etch depth). The test objective, to recess to a constantrnrecess depth below the bottom of the mask, was achieved. The approach is outlined pictorially in Figure 1.Summary etch results are presented in Figure 2. Details regarding the results and approaches will be presentedrnin the full paper.
机译:当掩模层(通常为氮化硅)在晶圆之间的厚度范围很宽时,对沟槽电容器结构的制造进行精确的干涉终点控制将具有挑战性。这是因为氮化物的厚度首先强烈影响目标刻蚀深度,其次影响用于端点系统确定刻蚀深度的光学干涉条纹的周期性。所需要的是精确的掩模厚度信息,并能够针对目标刻蚀深度和条纹纯度缺乏对端点控制算法进行自适应补偿。有条纹的端点信号代表单个波长随时间的反射率的周期性变化,这是连续相变的结果随着刻蚀的进行,从刻蚀正面反射的光和刻蚀掩模之间的距离会变大。来自掩模层的顶部和底部的反射可以具有任何相位关系。如果这两个反射对于特定波长异相,则称该掩模在该波长下具有抗反射性。如果反射同相,则该掩模是反射性的。在这两个极端之间,顶部和底部反射的相对相位不断变化,因此相对反射率也不断变化。rn在这项工作中,初步的工作发现,凹槽蚀刻中任何单个波长的早期条纹周期的周期性都受到强烈影响。遮罩的相对反射率。我们的努力还清楚地表明,非周期性条纹信号可能源于随时间变化的非恒定蚀刻速率。因此,重要的是要结合一种分离这两种作用的方法来实现最佳的过程控制。进一步分析取自具有广泛变化的掩模厚度的蚀刻样品的实验数据,使我们得出以下结论:如果自适应选择条纹计数波长,使得其对特定掩模具有一致的相对反射率,则条纹周期性,从而条纹计数精度可以大大改善。利用这些数据,可以构建将掩模厚度与“最佳”波长相关联以用于条纹计数的经验函数。为了测试该方法,开发了一种结合了波长选择经验函数的自适应端点算法。然后,对制备的样本集进行一次单独的测试,样本集的掩膜厚度范围广(152-190nm)。该测试的目的是使所有样品的电容器电极凹进到蚀刻掩模底部下方的30nm处。以下报告的结果是在一次自动运行中使用相同的工艺配方和相同的终点算法设置蚀刻的许多晶圆样品。先进的特征端点系统(Applied Materials EyeD-IEP)与Silicon Etch DPS结合使用。加上Centuraò系统进行测试。端点系统由能够在200-800nm范围内分析的宽带光源2和CCD光谱仪2组成。端点系统软件实用程序2启用了覆盖膜厚度的测量,将厚度值存储在内存中,最后在凹进步骤中从内存中调用厚度值以在适当的时间自动修改条纹计数器属性。在氧化物去除(穿透)步骤之前和之后都测量了掩模氮化物。进行突破后氮化物厚度测量,并与上述经验关系一起使用,以确定用于条纹计数的最佳光波长。最佳波长与掩模厚度一起存储在存储器中,然后在凹陷步骤中检索以设置条纹计数器属性和总蚀刻深度目标(较厚的掩模=更大的目标蚀刻深度)。达到了在掩模底部以下凹进恒定凹进深度的测试目的。图1中以图形方式概述了该方法。图2总结了蚀刻的结果。有关结果和方法的详细信息将在整篇论文中介绍。

著录项

  • 来源
    《AEC/APC symposium XV》|2003年|1-2|共2页
  • 会议地点 Colorado Springs CO(US);Colorado Springs CO(US)
  • 作者

    Lei Lian; Matthew Davis;

  • 作者单位

    Applied Materials, Inc OEM equipment and software utilities manufactured by Verity Instruments, Inc.;

    rnApplied Materials, Inc OEM equipment and software utilities manufactured by Verity Instruments, Inc.;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号