首页> 外文会议>2019 56th ACM/IEEE Design Automation Conference >ABM-SpConv: A Novel Approach to FPGA-Based Acceleration of ConvolutionaI NeuraI Network Inference
【24h】

ABM-SpConv: A Novel Approach to FPGA-Based Acceleration of ConvolutionaI NeuraI Network Inference

机译:ABM-SpConv:一种基于FPGA的卷积神经网络推理加速方法

获取原文
获取原文并翻译 | 示例

摘要

Hardware accelerators for convolutional neural network (CNN) inference have been extensively studied in recent years. The reported designs tend to utilize a similar underlying architecture based on multiplier-accumulator (MAC) arrays, which has the practical consequence of limiting the FPGA-based accelerator performance by the number of available on-chip DSP blocks, while leaving other resource under-utilized. To address this problem, we consider a transformation to the convolution computation, which leads to transformation of the accelerator design space and relaxes the pressure on the required DSP resources. We demonstrate that our approach enables us to strike a judicious balance between utilization of the on-chip memory, logic, and DSP resources, due to which, our accelerator considerably outperforms state of the art. We report the effectiveness of our approach on a Stratix-V GXA7 FPGA, which shows 55% throughput improvement, while using 6.25% less DSP blocks, compared to the best reported CNN accelerator on the same device.
机译:近年来,对卷积神经网络(CNN)推理的硬件加速器进行了广泛的研究。报告的设计倾向于利用基于乘法器-累加器(MAC)阵列的相似基础架构,其实际结果是,将基于FPGA的加速器性能限制为可用的片上DSP块数量,而其他资源则不足。利用。为了解决这个问题,我们考虑了对卷积计算的转换,这导致了加速器设计空间的转换并减轻了对所需DSP资源的压力。我们证明了我们的方法使我们能够在片上存储器,逻辑和DSP资源的利用之间达到明智的平衡,因此,我们的加速器大大优于现有技术。我们报告了我们的方法在Stratix-V GXA7 FPGA上的有效性,与同一器件上报告最多的CNN加速器相比,该算法显示出55%的吞吐量提高,而DSP块的使用减少了6.25%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号