首页> 外文会议>2012 IEEE Sixth International Conference on Semantic Computing. >Translate Once, Translate Twice, Translate Thrice and Attribute: Identifying Authors and Machine Translation Tools in Translated Text
【24h】

Translate Once, Translate Twice, Translate Thrice and Attribute: Identifying Authors and Machine Translation Tools in Translated Text

机译:一次翻译,两次翻译,三次翻译和属性:识别翻译文本中的作者和机器翻译工具

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the effects of machine translation tools on translated texts and the accuracy of authorship and translator attribution of translated texts. We show that the more translation performed on a text by a specific machine translation tool, the more effects unique to that translator are observed. We also propose a novel method to perform machine translator and authorship attribution of translated texts using a feature set that led to 91.13% and 91.54% accuracy on average, respectively. We claim that the features leading to highest accuracy in translator attribution are translator-dependent features and that even though translator-effect-heavy features are present in translated text, we can still succeed in authorship attribution. These findings demonstrate that stylometric features of the original text are preserved at some level despite multiple consequent translations and the introduction of translator-dependent features. The main contribution of our work is the discovery of a feature set used to accurately perform both translator and authorship attribution on a corpus of diverse topics from the twenty-first century, which has been consequently translated multiple times using machine translation tools.
机译:在本文中,我们研究了机器翻译工具对翻译文本的影响以及翻译文本的作者身份和翻译者归属的准确性。我们表明,使用特定的机器翻译工具对文本执行的翻译越多,观察到的翻译效果就越多。我们还提出了一种新颖的方法,该方法使用特征集执行机器翻译和翻译过的文本的作者身份,这些特征集分别平均导致91.13%和91.54%的准确性。我们声称导致翻译者归因最高精度的特征是依赖于翻译者的特征,即使翻译文本中存在大量具有翻译器效应的特征,我们仍然可以在作者身份归因中取得成功。这些发现表明,尽管进行了多次后续翻译并引入了依赖翻译的功能,但原始文本的样式特征仍保留了一定水平。我们工作的主要贡献是发现了一个功能集,该功能集可以准确地对二十一世纪的各种主题语料进行翻译和作者归因,因此已使用机器翻译工具对其进行了多次翻译。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号