类空超曲面
类空超曲面的相关文献在1991年到2021年内共计58篇,主要集中在数学、物理学
等领域,其中期刊论文58篇、专利文献115465篇;相关期刊42种,包括绍兴文理学院学报、咸阳师范学院学报、安徽师范大学学报(自然科学版)等;
类空超曲面的相关文献由66位作者贡献,包括欧阳崇珍、刘建成、宋卫东等。
类空超曲面—发文量
专利文献>
论文:115465篇
占比:99.95%
总计:115523篇
类空超曲面
-研究学者
- 欧阳崇珍
- 刘建成
- 宋卫东
- 舒世昌
- 钟定兴
- 刘三阳
- 刘海明
- 吴报强
- 吴泽九
- 吴炳烨
- 宣满友
- 张后君
- 张士诚
- 张运涛
- 徐森林
- 戴忠柱
- 杨慧章
- 潮小李
- 苗佳晶
- 黎镇琦
- 龙瑶
- DING Lu
- XU Xu
- 丁志强
- 初裴裴
- 叶耀军
- 吴传喜
- 吴庆琼
- 周亚非
- 唐文祥
- 姜蕴芝
- 姬秀
- 孙弘安
- 孙忠洋
- 孙霞
- 宋晴睛
- 张德燕
- 张远征
- 彭夏环
- 成庆明
- 曹娟娟
- 朱静勇
- 李光汉
- 李志波
- 柴瑞娟
- 欧阳萌
- 汪兴上
- 汪悦
- 王佩君
- 白苗苗
-
-
-
王佩君;
潮小李;
白苗苗
-
-
摘要:
The rigidity of spacelike hypersurface Mnimmersed in locally symmetric space Mn+1(1) is investigated, where the ( normalized) scalar curvature R and mean curvature H of Mn satisfy R = aH + b, and a, b are real constants. First, an estimate of the upper bound of the function L( nH) is given, where L is a second-order differential operator. Then, under the assumption that the square norm of the second fundamental form is bounded by a given positive constant, it is proved that Mnmust be either totally umbilical or contain two distinct principle curvatures, one of which is simple. Moreover, a similar result is obtained for complete noncompact spacelike hypersurfaces in locally symmetric Einstein spacetime. Hence, some known rigidity results for hypersurface with constant scalar curvature are extended for the linear Weingarten case.%研究了局部对称Lorentz空间Mn+1(1) 中类空超曲面Mn的刚性问题,其中Mn的数量曲率R和平均曲率H满足线性关系R=aH+b,a,b是实常数.首先,给出函数L( nH)上界的估计值,其中L是二阶微分算子.若Mn第二基本形式的平方范数小于或等于一个给定的正常数,证明了:Mn一定是全脐地,或者含有2个不同的主曲率,且其中一个主曲率是单的.此外,还得到了关于局部对称爱因斯坦时空中完备非紧类空超曲面类似的结果.因此,具有常数量曲率超曲面的刚性结果被推广到线性Weingarten情形.
-
-
-
姬秀;
胡传峰
-
-
摘要:
In this paper, by applying the Omori -Yau generalized maximum principal for complete Riemannian manifolds, we obtain Bernstein -type results concerning Complete spacelike hypersurfaces with constant mean curvature in -R ×Sn .%我们讨论-R ×Sn 中具有常平均曲率的类空超曲面,利用 Omori -Yau 广义极大原理得到关于Lorentzian乘积空间-R ×Sn 中具有常平均曲率的类空超曲面的Bernstein-type结果。
-
-
刘建成;
柴瑞娟
-
-
摘要:
设(M,g)是一个具有Killing向量场ε的伪黎曼流形.本文讨论M的紧致类空超曲面M上Killing向量场的存在性问题,给出了M上存在Killing向量场的一个充分条件.%Let((M),g)be a semi-Riemannian manifold with a Killing vector field ε.In this paper,the existence problems of Killing vector fields on compact spacelike hypersurface M of M are studied,and a sufficient condition for the existence of Killing vector fields is obtained.
-
-
刘建成;
戴忠柱
-
-
摘要:
By applying the Ornori-Yau generalized maximum principle for complete Riemannian manifolds, a sufficient condition was obtained for complete space-like hypersurfaces with constant mean curvature immersed in the Lorentzian product space Sn(c)×R1 as space-like slices, where Sn(c) denoting standard sphere with constant sectional curvature c>0.%利用完备黎曼流形的Omori-Yau广义极大值原理,获得Lorentzian乘积空间Sn(c)×R1中具有常平均曲率的类空超曲面是类空slice的一个充分条件,其中Sn(c)表示常截曲率为c>0的标准球面.
-
-
-
宋卫东;
宋晴睛
-
-
摘要:
利用自伴算子□,研究局部对称共形平坦Lorentz流形中具有常数量曲率的紧致类空超曲面,得到了这类超曲面的一个刚性定理.%In this papier, we study the compact space-like hypersurfaces with constant scalar curvature in locally symmetric conformally flat Lorentzian manifold, and obtain a rigidity theorems by introducing a self-adjoint operator. The results generalize some previous result.
-
-
-
杨慧章;
穆凤;
龙瑶
-
-
摘要:
Compact space-like hypersurfaces with harmonic Riemannian curvature tensor in de Sitter space were studied,a rigidity theorem about this class of hypersurfaces was obtained,compact space-like hyperfaces with harmonic Riemannian curvature tensor and with nonnegative section curvature in de Sitter space Sn + 11 are totally umbilical or isometric to Mn=Mp1(c1)×Mn-p2(c2),here c1 and c2 are constant.%研究了de Sitter空间中具有调和黎曼曲率张量的紧致类空超曲面,得到了这类超曲面的一个刚性定理:de Sitter空间S1n+1中具有调和黎曼曲率张量且截面曲率非负的紧致类空超曲面全脐或等距于Mn=M1p(c1)×M2n-p(c2),这里c1,c2为常数.