首页> 外文OA文献 >SORTCERY—A High–Throughput Method to Affinity Rank Peptide Ligands
【2h】

SORTCERY—A High–Throughput Method to Affinity Rank Peptide Ligands

机译:sORTCERY - 亲和力等级肽配体的高通量方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Uncovering the relationships between peptide and protein sequences and binding properties is critical for successfully predicting, re-designing and inhibiting protein–protein interactions. Systematically collected data that link protein sequence to binding are valuable for elucidating determinants of protein interaction but are rare in the literature because such data are experimentally difficult to generate. Here we describe SORTCERY, a high-throughput method that we have used to rank hundreds of yeast-displayed peptides according to their affinities for a target interaction partner. The procedure involves fluorescence-activated cell sorting of a library, deep sequencing of sorted pools and downstream computational analysis. We have developed theoretical models and statistical tools that assist in planning these stages. We demonstrate SORTCERY's utility by ranking 1026 BH3 (Bcl-2 homology 3) peptides with respect to their affinities for the anti-apoptotic protein Bcl-x[subscript L]. Our results are in striking agreement with measured affinities for 19 individual peptides with dissociation constants ranging from 0.1 to 60 nM. High-resolution ranking can be used to improve our understanding of sequence–function relationships and to support the development of computational models for predicting and designing novel interactions.
机译:揭示肽与蛋白质序列和结合特性之间的关系对于成功预测,重新设计和抑制蛋白质间相互作用至关重要。系统收集的将蛋白质序列与结合相联系的数据对于阐明蛋白质相互作用的决定因素很有价值,但在文献中很少见,因为此类数据在实验上难以生成。在这里,我们描述了SORTCERY,这是一种高通量方法,我们已根据其对目标相互作用对象的亲和力对数百种酵母菌展示的肽进行了排名。该程序涉及库的荧光激活细胞分选,分选池的深度测序和下游计算分析。我们已经开发了有助于计划这些阶段的理论模型和统计工具。我们通过排序1026 BH3(Bcl-2同源性3)肽相对于其对抗凋亡蛋白Bcl-x [下标L]的亲和力来证明SORTCERY的效用。我们的结果与解离常数范围为0.1到60 nM的19种独立肽的亲和力的测量结果惊人地吻合。高分辨率排名可以用来增进我们对序列-功能关系的理解,并支持用于预测和设计新颖相互作用的计算模型的开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号