首页> 外文OA文献 >High open-circuit voltage in heterojunction photovoltaics containing a printed colloidal quantum-dot photosensitive layer
【2h】

High open-circuit voltage in heterojunction photovoltaics containing a printed colloidal quantum-dot photosensitive layer

机译:异质结光伏电池中的高开路电压,包含印刷的胶体量子点光敏层

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Within four to seven years, electricity generated from solar cells will cost less than grid electricity, making it the cleanest, cheapest, and most abundant energy source on the planet. The rise of solar energy, however, could come to an untimely end if current solar cell technologies fail to meet the staggering manufacturing volumes needed to sustain current growth rates. Nanostructured donor/acceptor photovoltaics utilizing small molecule organics or conjugated polymers offer processing advantages that might enable high-throughput, large-area production. However, power conversion efficiencies of these structures have remained low, due in large part to low open-circuit voltages (VOC). Using printing methods, we deposit a layer of colloidal cadmium selenide (CdSe) quantum dots (QDs) onto a wide band-gap organic hole-transporting thin film of N,N'-bis(3-methylphenyl)-N,N'-bis-(phenyl)-9,9-spirobiuorene (spiro-TPD) in order to form a unique planar heterojunction photovoltaic device. This structure is found to produce much higher VOC than previously predicted for donor/acceptor heterojunction photovoltaics. Absorption and charge generation occur primarily in the QD layer and indium tin oxide (ITO) provides the top contact, allowing for exceptional device stability and full transparency below the QD bandgap of 2.0 eV. Overall power conversion efficiencies remain low at 0.03% because only a small percentage of the incident light is absorbed (4% at the rst QD excitonic peak of 2.1 eV) and ll factors are near 0.4, yet VOC is 1.3V.
机译:在四到七年内,太阳能电池产生的电能将比电网电能便宜,从而使其成为地球上最清洁,最便宜和最丰富的能源。但是,如果当前的太阳能电池技术无法满足维持当前增长率所需的惊人制造量,太阳能的兴起可能会适时结束。利用小分子有机物或共轭聚合物的纳米结构供体/受体光伏电池具有加工优势,可实现高通量,大面积生产。但是,这些结构的功率转换效率一直很低,这在很大程度上是由于低的开路电压(VOC)。使用印刷方法,我们将胶体硒化镉(CdSe)量子点(QDs)层沉积到N,N'-双(3-甲基苯基)-N,N'-的宽带隙有机空穴传输薄膜上为了形成独特的平面异质结光伏器件,需要使用双-(苯基)-9,9-螺二硼碳烯(spiro-TPD)。发现该结构产生的VOC比先前对于施主/受主异质结光伏器件所预测的高得多。吸收和电荷产生主要发生在QD层中,铟锡氧化物(ITO)提供了顶部接触,从而实现了出色的器件稳定性和低于2.0 eV的QD带隙的完全透明性。总体功率转换效率保持在0.03%的较低水平,因为只有一小部分入射光被吸收(在2.1 eV的第一个QD激子峰处为4%),并且II因子接近0.4,而VOC为1.3V。

著录项

  • 作者

    Arango Alexi Cosmos 1975-;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号