首页> 外文OA文献 >Sum of Products of Read-Once Formulas
【2h】

Sum of Products of Read-Once Formulas

机译:一次性公式的乘积和

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study limitations of polynomials computed by depth two circuits built over read-once formulas (ROFs). In particular, 1. We prove an exponential lower bound for the sum of ROFs computing the 2n-variate polynomial in VP defined by Raz and Yehudayoff [CC,2009]. 2. We obtain an exponential lower bound on the size of arithmetic circuits computing sum of products of restricted ROFs of unbounded depth computing the permanent of an n by n matrix. The restriction is on the number of variables with + gates as a parent in a proper sub formula of the ROF to be bounded by sqrt(n). Additionally, we restrict the product fan in to be bounded by a sub linear function. This proves an exponential lower bound for a subclass of possibly non-multilinear formulas of unbounded depth computing the permanent polynomial.3. We also show an exponential lower bound for the above model against a polynomial in VP. 4. Finally we observe that the techniques developed yield an exponential lower bound on the size of sums of products of syntactically multilinear arithmetic circuits computing a product of variable disjoint linear forms where the bottom sum gate and product gates at the second level have fan in bounded by a sub linear function. Our proof techniques are built on the measure developed by Kumar et al.[ICALP 2013] and are based on a non-trivial analysis of ROFs under random partitions. Further, our results exhibit strengths and provide more insight into the lower bound techniques introduced by Raz [STOC 2004].
机译:我们研究了通过一次读取公式(ROF)建立的深度两个电路计算的多项式的局限性。特别是1.我们证明了ROF的总和的指数下界,该ROF用于计算Raz和Yehudayoff定义的VP中的2n变量多项式[CC,2009]。 2.在计算无边界深度的受限ROF乘积之和并计算n×n矩阵的永久性的算术电路的大小上,我们获得了指数下界。限制是在要受sqrt(n)约束的ROF的适当子公式中,以+门作为父级的变量的数量。此外,我们将产品风扇限制在一个子线性函数的范围内。这证明了计算永久多项式的无界深度的可能非多线性公式的子类的指数下界。3。我们还针对VP中的多项式显示了上述模型的指数下界。 4.最后,我们观察到,所开发的技术在计算可变不相交线性形式的乘积的句法多线性算术电路的乘积和的大小上产生指数下界,其中第二级的底部和门与乘积门具有扇形通过子线性函数。我们的证明技术基于Kumar等人[ICALP 2013]开发的测度,并基于随机分区下ROF的非平凡分析。此外,我们的研究结果显示出优势,并为Raz [STOC 2004]引入的下限技术提供了更多见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号