首页> 外文期刊>ACM Transactions on Computational Theory >Lower bounds for Sum and Sum of Products of Read-once Formulas
【24h】

Lower bounds for Sum and Sum of Products of Read-once Formulas

机译:一次公式的乘积和和的下界

获取原文
获取原文并翻译 | 示例

摘要

We study limitations of polynomials computed by depth-2 circuits built over read-once formulas (ROFs). In particular: 1. We prove a 2~(Ω(n)) lower bound for the sum of ROFs computing the 2n-variate polynomial in VP defined by Raz and Yehudayoff [21]. 2. We obtain a 2~(Ω(√n)) lower bound on the size of ΣП~([n~(1/15)]) arithmetic circuits built over restricted ROFs of unbounded depth computing the permanent of an n × n matrix (superscripts on gates denote bound on the fan-in). The restriction is that the number of variables with + gates as a parent in a proper sub formula of the ROF has to be bounded by √n This proves an exponential lower bound for a subclass of possibly non-multilinear formulas of unbounded depth computing the permanent polynomial. 3. We also show an exponential lower bound for the above model against a polynomial in VP. 4. Finally, we observe that the techniques developed yield an exponential lower bound on the size of ΣП~([N~(1/30)]) arithmetic circuits built over syntactically multi-linear ΣПΣ~([N(1/4)]) arithmetic circuits computing a product of variable disjoint linear forms on N variables, where the superscripts on gates denote bound on the fan-in. Our proof techniques are built on the measure developed by Kumar et al. [14] and are based on a non-trivial analysis of ROFs under random partitions. Further, our results exhibit strengths and provide more insight into the lower bound techniques introduced by Raz [19].
机译:我们研究由一次读取公式(ROF)构建的深度2电路计算的多项式的局限性。特别是:1.我们证明了ROF的总和的2〜(Ω(n))下界,由Raz和Yehudayoff [21]定义VP中的2n变量多项式。 2.在无限制深度的受限ROF上建立的ΣП〜([n〜(1/15)])算术电路的大小上,我们获得2〜(Ω(√n))的下限,计算出n×n的永久性矩阵(门上的上标表示扇入边界)。限制是在ROF的适当子公式中以+门作为父级的变量的数量必须以√n为界。这证明了无界深度计算永久性的可能非多线性公式的子类的指数下界多项式3.我们还针对VP中的多项式显示了上述模型的指数下界。 4.最后,我们观察到,所开发的技术在基于句法多线性ΣПΣ〜([N(1/4)的基础上建立的ΣП〜([N〜(1/30)])算术电路的尺寸上产生了指数下界])算术电路,计算N个变量的变量不相交线性形式的乘积,其中门上的上标表示扇入界。我们的证明技术建立在Kumar等人开发的测度基础上。 [14]并基于随机分区下ROF的非平凡分析。此外,我们的研究结果显示出优势,并为Raz [19]引入的下限技术提供了更多见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号