首页> 外文期刊>ACM transactions on computation theory >Lower bounds for Sum and Sum of Products of Read-once Formulas
【24h】

Lower bounds for Sum and Sum of Products of Read-once Formulas

机译:用于阅读一次公式的产品总和和总和的下限

获取原文
获取原文并翻译 | 示例

摘要

We study limitations of polynomials computed by depth-2 circuits built over read-once formulas (ROFs). In particular: 1. We prove a 2~(Ω(n)) lower bound for the sum of ROFs computing the 2n-variate polynomial in VP defined by Raz and Yehudayoff [21]. 2. We obtain a 2~(Ω(√n)) lower bound on the size of ΣП~([n~(1/15)]) arithmetic circuits built over restricted ROFs of unbounded depth computing the permanent of an n × n matrix (superscripts on gates denote bound on the fan-in). The restriction is that the number of variables with + gates as a parent in a proper sub formula of the ROF has to be bounded by √n This proves an exponential lower bound for a subclass of possibly non-multilinear formulas of unbounded depth computing the permanent polynomial. 3. We also show an exponential lower bound for the above model against a polynomial in VP. 4. Finally, we observe that the techniques developed yield an exponential lower bound on the size of ΣП~([N~(1/30)]) arithmetic circuits built over syntactically multi-linear ΣПΣ~([N(1/4)]) arithmetic circuits computing a product of variable disjoint linear forms on N variables, where the superscripts on gates denote bound on the fan-in. Our proof techniques are built on the measure developed by Kumar et al. [14] and are based on a non-trivial analysis of ROFs under random partitions. Further, our results exhibit strengths and provide more insight into the lower bound techniques introduced by Raz [19].
机译:我们研究了由读一次式(ROF)构建的深度-2电路计算的多项式的限制。特别是:1。我们证明了2〜(n))下限,用于计算RAZ和Yehudayoff定义的VP中的2N变化多项式的ROF和[21]。 2.我们获得了σп〜([n〜(1/15)])尺寸的2〜(√n))算术电路,内置的无限性深度的限制rofs计算了n×n的永久性矩阵(栅极上的上标表示粉丝绑定)。限制是具有+栅极作为rof的适当子公式中的父级的变量数必须束缚,这证明了一个指数下限,用于可能的非界限深度计算永久性的非多线性公式的子类多项式。 3.我们还显示了上述模型对VP多项式的指数下限。 4.最后,我们观察到该技术产生的σп〜([n〜(1/30)])算术电路在句法多线性σпςς〜([n(1/4)的算术电路上产生指数下限。([n(1/4) ])计算在N变量上计算变量不相交线性形式的乘积的算术电路,其中栅极上的上标在风扇上的绑定表示。我们的证明技术建立在Kumar等人开发的措施上。 [14]并且基于随机分区下ROF的非琐碎分析。此外,我们的结果表现出优势,并提供更多地洞察RAZ引入的下限技术[19]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号