首页> 外文OA文献 >Training Spiking Neural Networks to Associate Spatio-temporal Input-output Spike Patterns
【2h】

Training Spiking Neural Networks to Associate Spatio-temporal Input-output Spike Patterns

机译:训练尖峰神经网络以关联时空输入 - 输出尖峰模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a previous work (Mohemmed et al., Method for training a spiking neuron to associate input–output spike trains) we have proposed a supervised learning algorithm based on temporal coding to train a spiking neuron to associate input spatiotemporal spike patterns to desired output spike patterns. The algorithm is based on the conversion of spike trains into analogue signals and the application of the Widrow–Hoff learning rule. In this paper we present a mathematical formulation of the proposed learning rule. Furthermore, we extend the application of the algorithm to train a SNN consisting of multiple spiking neurons to perform spatiotemporal pattern classification and we show that the accuracy of classification is improved significantly over a single spiking neuron. We also investigate a number of possibilities to map the temporal output of the trained spiking neuron into a class label. Potential applications for motor control in neuro-rehabilitation and neuro-prosthetics are discussed as a future work.
机译:在先前的工作中(Mohemmed等,训练尖峰神经元以关联输入-输出尖峰序列的方法),我们提出了一种基于时间编码的监督学习算法,以训练尖峰神经元以将输入时空尖峰模式与所需的输出尖峰相关联。模式。该算法基于尖峰序列到模拟信号的转换以及Widrow-Hoff学习规则的应用。在本文中,我们提出了所提出的学习规则的数学公式。此外,我们扩展了该算法的应用范围,以训练由多个尖峰神经元组成的SNN来进行时空模式分类,并且我们证明,与单个尖峰神经元相比,分类的准确性显着提高。我们还研究了许多将经过训练的加标神经元的时间输出映射到类别标签中的可能性。运动控制在神经康复和神经修复中的潜在应用将作为未来的工作进行讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号