首页> 外文OA文献 >Distributed Deep Learning Models for Wireless Signal Classification with Low-Cost Spectrum Sensors
【2h】

Distributed Deep Learning Models for Wireless Signal Classification with Low-Cost Spectrum Sensors

机译:用于无线信号分类的分布式深度学习模型   低成本频谱传感器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper looks into the technology classification problem for a distributedwireless spectrum sensing network. First, a new data-driven model for AutomaticModulation Classification (AMC) based on long short term memory (LSTM) isproposed. The model learns from the time domain amplitude and phase informationof the modulation schemes present in the training data without requiring expertfeatures like higher order cyclic moments. Analyses show that the proposedmodel yields an average classification accuracy of close to 90% at varying SNRconditions ranging from 0dB to 20dB. Further, we explore the utility of thisLSTM model for a variable symbol rate scenario. We show that a LSTM based modelcan learn good representations of variable length time domain sequences, whichis useful in classifying modulation signals with different symbol rates. Theachieved accuracy of 75% on an input sample length of 64 for which it was nottrained, substantiates the representation power of the model. To reduce thedata communication overhead from distributed sensors, the feasibility ofclassification using averaged magnitude spectrum data, or online classificationon the low cost sensors is studied. Furthermore, quantized realizations of theproposed models are analyzed for deployment on sensors with low processingpower.
机译:本文研究了分布式无线频谱传感网络的技术分类问题。首先,提出了一种基于长期短期记忆(LSTM)的自动调制分类(AMC)的数据驱动模型。该模型从训练数据中存在的调制方案的时域幅度和相位信息中学习,而无需像高阶循环矩这样的专家功能。分析表明,在0dB至20dB的信噪比条件下,该模型的平均分类准确率接近90%。此外,我们探索了该LSTM模型在可变符号率情况下的实用性。我们表明,基于LSTM的模型可以学习可变长度时域序列的良好表示,这对于分类具有不同符号率的调制信号很有用。在未经训练的输入样本长度为64时达到的75%的准确性证明了模型的表示能力。为了减少分布式传感器的数据通信开销,研究了使用平均幅度谱数据进行分类或在低成本传感器上进行在线分类的可行性。此外,分析了所提出模型的量化实现,以便部署在具有低处理能力的传感器上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号