首页> 外文OA文献 >An Iterative Reweighted Method for Tucker Decomposition of Incomplete Multiway Tensors
【2h】

An Iterative Reweighted Method for Tucker Decomposition of Incomplete Multiway Tensors

机译:不完全系统Tucker分解的迭代重加权方法   多道推广

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the problem of low-rank decomposition of incomplete multiwaytensors. Since many real-world data lie on an intrinsically low dimensionalsubspace, tensor low-rank decomposition with missing entries has applicationsin many data analysis problems such as recommender systems and imageinpainting. In this paper, we focus on Tucker decomposition which represents anNth-order tensor in terms of N factor matrices and a core tensor viamultilinear operations. To exploit the underlying multilinear low-rankstructure in high-dimensional datasets, we propose a group-based log-sumpenalty functional to place structural sparsity over the core tensor, whichleads to a compact representation with smallest core tensor. The method forTucker decomposition is developed by iteratively minimizing a surrogatefunction that majorizes the original objective function, which results in aniterative reweighted process. In addition, to reduce the computationalcomplexity, an over-relaxed monotone fast iterative shrinkage-thresholdingtechnique is adapted and embedded in the iterative reweighted process. Theproposed method is able to determine the model complexity (i.e. multilinearrank) in an automatic way. Simulation results show that the proposed algorithmoffers competitive performance compared with other existing algorithms.
机译:我们考虑了不完全多张量张量的低秩分解问题。由于许多实际数据位于本质上较低的维子空间上,因此缺少条目的张量低秩分解已在许多数据分析问题中应用,例如推荐系统和图像修复。在本文中,我们关注于Tucker分解,它通过多线性运算以N因子矩阵和核心张量表示N次张量。为了利用高维数据集中的底层多线性低秩结构,我们提出了一个基于组的对数悬垂函数,将结构稀疏性放置在核心张量上,从而以最小的核心张量表示紧凑。通过迭代地最小化代表原始目标函数的替代函数,从而开发出塔克分解方法,从而实现了迭代的加权过程。另外,为了减少计算复杂度,过度松弛的单调快速迭代收缩阈值技术被适配并嵌入在迭代加权过程中。所提出的方法能够以自动方式确定模型的复杂度(即,多线性秩)。仿真结果表明,与现有算法相比,该算法具有更好的竞争性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号