首页> 外文期刊>IEEE Transactions on Signal Processing >An Iterative Reweighted Method for Tucker Decomposition of Incomplete Tensors
【24h】

An Iterative Reweighted Method for Tucker Decomposition of Incomplete Tensors

机译:不完全张量的塔克分解的迭代加权方法

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of low-rank decomposition of incomplete tensors. Since many real-world data lie on an intrinsically low-dimensional subspace, tensor low-rank decomposition with missing entries has applications in many data analysis problems such as recommender systems and image inpainting. In this paper, we focus on Tucker decomposition which represents an th-order tensor in terms of factor matrices and a core tensor via multilinear operations. To exploit the underlying multilinear low-rank structure in high-dimensional datasets, we propose a group-based log-sum penalty functional to place structural sparsity over the core tensor, which leads to a compact representation with smallest core tensor. The proposed method is developed by iteratively minimizing a surrogate function that majorizes the original objective function. This iterative optimization leads to an iteratively reweighted least squares algorithm. In addition, to reduce the computational complexity, an over-relaxed monotone fast iterative shrinkage-thresholding technique is adapted and embedded in the iterative reweighted process. The proposed method is able to determine the model complexity (i.e., multilinear rank) in an automatic way. Simulation results show that the proposed algorithm offers competitive performance compared with other existing algorithms.
机译:我们考虑了不完全张量的低秩分解问题。由于许多实际数据位于本质上是低维子空间上,因此缺少条目的张量低秩分解可用于许多数据分析问题,例如推荐系统和图像修复。在本文中,我们关注于Tucker分解,该分解通过因子矩阵表示核心张量,并通过多线性运算表示核心张量。为了利用高维数据集中潜在的多线性低秩结构,我们提出了基于组的对数和罚函数,将结构稀疏性放置在核心张量上,从而以最小的核心张量表示紧凑。所提出的方法是通过迭代地最小化可最大化原始目标函数的替代函数而开发的。该迭代优化导致迭代地加权最小二乘算法。另外,为了降低计算复杂度,过度松弛的单调快速迭代收缩阈值技术被适配并嵌入到迭代重加权过程中。所提出的方法能够以自动的方式确定模型的复杂度(即,多线性秩)。仿真结果表明,与现有算法相比,该算法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号