首页> 外文OA文献 >Solving parity games through fictitious play
【2h】

Solving parity games through fictitious play

机译:通过虚构游戏解决平价游戏

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The thesis aims to find an efficient algorithm for solving parity games. Parity games are graph-based, 0-sum, 2-person games with infinite plays. It is known that these games are determined: all nodes in these games are won by exactly one player. Solving parity games is equivalent to the model checking problem of modal mu-calculus; an efficient solution has important implications to program verification and controller synthesis. Although the decision problem of which player wins a given node is generally believed to be in PTIME, all known algorithms so far have been shown to run in (sub)exponential time. The design of existing algorithms either derives from the determinacy proof of parity games or from a purely graph theoretical perspective, using certain rank functions to iteratively search for an optimal solution. Since parity games are 2-person, 0-sum games, in this thesis I borrow ideas of game theory and investigate the viability of using fictitious play to solve them. Fictitious play is a method where two players choose strategies in strict alternation, and where these choices are “best responses” against the last k (so called bounded recall length) or against all strategies (unbounded recall length) of the other player chosen so far.udI use this method to design an algorithm that can solve partity games andudstudy its theoretical and experimental properties. For example, I prove that the basic algorithm solves fully connected games in polynomial time through a number of iterations that is bounded by a small constant. Although the proof is not extended to the general cases in the thesis, the basic algorithm performs demonstrably well against existing solvers in experiments over a large number and variety of games. In particular, the empirically obtained number of iterations that our basic algorithm requires appears to increase polynomially against the game sizes for all the games tested. Furthermore, the algorithm is conjectured to have a run time complexity bounded by O(n4 log2(n)) and I provide a discussion of strategy graphs and their emperically observed properties that motivates this conjecture.udOne caveat of fictitious play with bounded recall length is that the algorithm may fail to converge to the optimal solution due to the presence of nonoptimal strategy cycles of length greater than 2. In this thesis, I observe that in practice such cases account for less than 0.01% of the games tested. Different cycle resolution methods are explored in the thesis to address this. One particular method combines our basic algorithm and the discrete strategy solver together such that the resulting algorithm is guaranteed to terminate with the optimal solution. Also, this combined solver shares the runtime performance of fictitious play.
机译:本文旨在寻找一种有效的平价博弈算法。奇偶校验游戏是具有无限玩法的基于图的0和2人游戏。众所周知,这些游戏是确定的:这些游戏中的所有节点都是由一名玩家赢得的。解决平价博弈等同于模态微演算的模型检查问题;一个有效的解决方案对程序验证和控制器综合具有重要意义。尽管通常认为哪个玩家赢得给定节点的决策问题是在PTIME中进行的,但到目前为止,所有已知算法都已证明在(次)指数时间内运行。现有算法的设计要么源自奇偶校验游戏的确定性证明,要么源自纯粹的图形理论观点,使用某些秩函数迭代搜索最优解。由于平价博弈是2人,零和博弈,因此在本文中,我借鉴了博弈论的思想,并研究了使用虚拟博弈来解决它们的可行性。虚拟游戏是一种方法,其中两个玩家严格轮流选择策略,并且这些选择是针对迄今为止选择的另一位玩家的最后一个k(所谓的有限制的召回长度)或针对所有策略(无限制的召回长度)的“最佳响应” 。 ud我使用此方法设计了一种算法,可以解决偏好游戏并研究其理论和实验性质。例如,我证明基本算法通过多次迭代来解决多项式时间内完全连通的游戏,这些迭代受一个小常数限制。尽管没有将证明扩展到本文的一般情况,但是在大量游戏和各种游戏的实验中,该基本算法与现有的求解器相比表现出色。尤其是,我们的基本算法所需的凭经验获得的迭代次数似乎在所有测试游戏的游戏大小上呈多项式增长。此外,该算法被认为具有O(n4 log2(n))限制的运行时复杂度,并且我提供了对策略图及其凭经验观察到的属性的讨论,从而激发了这种猜想。因为存在长度大于2的非最优策略周期,该算法可能无法收敛到最优解。在本文中,我观察到实际上在这种情况下,这种情况占测试游戏的比例不到0.01%。本文探讨了不同的循环分辨率方法来解决此问题。一种特定的方法将我们的基本算法和离散策略求解器结合在一起,从而可以确保以最佳解终止生成的算法。此外,此组合求解器共享虚拟游戏的运行时性能。

著录项

  • 作者

    Wang Huaxin;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号