首页> 外文OA文献 >Simulation of complex microstructural geometries using X-FEM and the application to solder joint lifetime prediction
【2h】

Simulation of complex microstructural geometries using X-FEM and the application to solder joint lifetime prediction

机译:用X-FEm模拟复杂的微观结构几何形状及其在焊点寿命预测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In electronic devices solder joints form a mechanical as well as an electrical connection between the circuit board and the component (e.g. a chip or a resistor). Temperature variations occurring during field use cause crack initiation and crack growth inside the joints. Accurate prediction of the lifetime requires a method to simulate the damage process based on microstructural properties. Numerical simulation of developing cracks and microstructural entities such as grain boundaries and grain junctions gives rise to several problems. The solution contains strong and weak discontinuities as well as weak singularities. To obtain reasonable solutions with the finite element method (FEM) the element edges have to align with the cracks and the grain boundaries, which imposes geometrical restrictions on the mesh choice. Additionally, a large number of elements has to be used in the vicinity of the singularities which increases the computational effort. Both problems can be circumvented with the extended finite element method (X-FEM) by using appropriate enrichment functions. In this thesis the X-FEM will be developed for the simulation of complex microstructural geometries. Due to the anisotropy of the different grains forming a joint and the variety of different microstructural configurations it is not always possible to write the enrichment functions in a closed form. A procedure to determine enrichment functions numerically is explained and tested. As a result, a very simple meshing scheme, which will be introduced here, can be used to simulate developing cracks in solder joint microstructures. Due to the simplicity of the meshing algorithm the simulation can be automated completely. A large number of enrichment functions must be used to realize this. Well-conditioned equation systems, however, cannot be guaranteed for such an approach. To improve the condition number of the X-FEM stiffness matrix and thus the robustness of the solution process a preconditioning technique is derived and applied. This approach makes it possible to develop a new and fully automated procedure for addressing the reliability of solder joints numerically. The procedure relies on the random generation of microstructures. Performing crack growth calculations for a series of these structures makes it possible to address the influence of varying microstructures on the damage process. Material parameters describing the microstructure are determined in an inverse procedure. It will be shown that the numerical results correspond well with experimental observations.
机译:在电子设备中,焊点在电路板和组件(例如芯片或电阻器)之间形成机械和电气连接。在现场使用过程中发生的温度变化会引起裂纹萌生和接头内部的裂纹扩展。寿命的准确预测需要一种基于微观结构特性模拟损伤过程的方法。裂纹和微观结构实体(如晶界和晶界)发展的数值模拟引起了一些问题。该解决方案包含强不连续性和弱不连续性以及弱奇异性。为了使用有限元方法(FEM)获得合理的解决方案,单元边缘必须与裂纹和晶界对齐,这对网格的选择施加了几何限制。此外,在奇异点附近必须使用大量元素,这会增加计算量。这两个问题都可以通过使用扩展的有限元方法(X-FEM)来解决,方法是使用适当的扩充函数。本文将开发X-FEM用于模拟复杂的微结构几何。由于形成接头的不同晶粒的各向异性以及不同的微结构形态的多样性,并非总是能够以封闭形式编写富集功能。解释和测试了确定数字富集函数的过程。结果,将在此处介绍的非常简单的网格划分方案可用于模拟焊点微观结构中出现的裂纹。由于网格划分算法的简单性,模拟可以完全自动化。必须使用大量的浓缩功能来实现这一点。但是,对于这种方法,不能保证条件良好的方程组。为了改善X-FEM刚度矩阵的条件数,从而提高求解过程的鲁棒性,推导并应用了预处理技术。这种方法使开发新的,完全自动化的程序成为可能,以数字方式解决焊点的可靠性。该程序依赖于微观结构的随机生成。对一系列此类结构进行裂纹扩展计算,有可能解决微观结构变化对破坏过程的影响。描述微结构的材料参数是通过逆过程确定的。结果表明,数值结果与实验结果吻合良好。

著录项

  • 作者

    Menk Alexander;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号