首页> 外文OA文献 >Functional Separation of Multimodular Type I PKS Polypeptides by Utilizing Matched Docking Domains From a Heterologous PKS System
【2h】

Functional Separation of Multimodular Type I PKS Polypeptides by Utilizing Matched Docking Domains From a Heterologous PKS System

机译:利用来自异源pKs系统的匹配对接域功能分离多模式I型pKs多肽

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bacterial type I modular polyketide synthases (PKS) are large multifunctional enzyme systems responsible for the biosynthesis of complex polyketide natural products such as erythromycin, pikromycin, and borrelidin. Type I systems are comprised of a loading module which generally selects an appropriate acyl group starter unit, and multiple discrete extension modules, responsible for each single round of acyl group incorporation into the final polyketide core structure. These modules can exist naturally as either single discrete polypeptides, such as modules 5 and 6 from the pikromycin PKS (PikA3 and PikA4 respectively), or as multimodular polypeptides fused together by short intrapolypeptide linkers such as the loading module and the first and second extension modules of the erythromycin and pikromycin PKSs (DEBS1 and PikAI respectively). While short peptide linkers between modules on the same polypeptide facilitate the transfer of polyketide intermediates from one module to the next via their close proximity to one another, docking domains found at the C-terminus of one module and the N-terminus of the next subsequent module facilitate the needed protein-protein interactions for the passage of biosynthetic intermediates between modules on separate polypeptides. The ability to utilize docking domains in place of intrapolypeptide linkers was explored in the pikromycin and erythromycin PKSs by dissecting the tri-modular PikAI and DEBS1 polypeptides with matched docking domains. It has been shown that PikAI can be separated into two proteins at either of these linkers, only when matched pairs of docking domains from a heterologous modular phoslactomycin PKS are used in place of the intrapolypeptide linker. In both cases the yields of pikromycin produced by the S. venezuelae host mutant, which is a PikAI deletion strain were 50% of that of an S. venezuelae strain expressing the native trimodular PikAI. Additionally, expression of module 2 as a monomodular protein fused to a heterologous N-terminal docking domain was also observed to give almost a 10-fold improvement in the in vivo generation of pikromycin from a synthetic diketide intermediate. The utilization of docking domains to separate linked modules was also demonstrated in the erythromycin PKS. Expression of the first protein involved in erythromycin biosynthesis (DEBS1) with the DEBS thioesterase fused to the C-terminal (DEBS1-TE) in S. venezuelae results in the production of triketide lactone products. Separation of DEBS1-TE resulted in 50% triketide lactone production, consistent with the observations in the pikromycin system. Published work has shown that the DEBS loading module has relaxed substrate specificity, and is capable of incorporating acetate, butyrate and isobutyrate in addition to the normally observed propionate starter unit, which typically predominates. However, in the current study when the DEBS loading module is separated from module 1 with matched docking domains, a dramatic shift in the starter unit, favoring the isobutyrate derived tri-ketide lactone is observed. This apparent shift in starter unit preference for a dissected PKS system has resulted in insights into the kinetics of acyl group loading, off loading, as well as the hydrolysis and transfer from the AT to ACP domains. In addition to the separation of multimodular PKS polypeptides with docking domains, it has also been shown that the individual catalytic domains of single discrete module, BorA5 from the borrelidin PKS can be expressed as stand alone proteins while retaining catalytic functionality in vitro. This work has provided a basis for future studies of this module, which has been proposed to function iteratively, catalyzing three rounds of chain elongation.
机译:细菌I型模块化聚酮化合物合酶(PKS)是大型多功能酶系统,负责复杂聚酮化合物天然产物(如红霉素,吡咯霉素和硼瑞林)的生物合成。 I型系统由通常选择合适的酰基起始剂单元的加载模块和负责将每轮酰基结合到最终聚酮化合物核心结构中的每一轮负责的多个离散的延伸模块组成。这些模块可以天然存在,既可以是单个离散多肽,例如来自吡咯霉素PKS的模块5和6(分别为PikA3和PikA4),也可以是通过短多肽内肽接头(例如加载模块以及第一和第二个扩展模块)融合在一起的多模块多肽红霉素和吡咯霉素PKSs(分别为DEBS1和PikAI)。虽然同一多肽上模块之间的短肽接头促进了聚酮化合物中间体从一个模块到另一个模块的转移,但它们彼此紧邻,但在一个模块的C端和下一个后续模块的N端发现了对接域组件促进必需的蛋白-蛋白相互作用,以使生物合成中间体在单独的多肽上的组件之间通过。通过剖析具有匹配的对接结构域的三模块PikAI和DEBS1多肽,探索了在吡咯霉素和红霉素PKS中利用对接结构域代替多肽内接头的能力。已经显示,只有当使用来自异源模块化磷脂酰肌氨酸激酶PKS的匹配的对接结构域对代替多肽内肽连接体时,PikAI才能在这些接头的任何一个处分离为两种蛋白质。在这两种情况下,由S.委内瑞拉葡萄球菌宿主突变体即PikAI缺失菌株产生的吡科霉素的产量是表达天然三模块PikAI的委内瑞拉葡萄球菌菌株的产量的50%。另外,还观察到模块2作为与异源N-末端对接结构域融合的单模块蛋白的表达在体内从合成的二酮化合物中间体产生吡咯霉素的过程中几乎提高了10倍。在红霉素PKS中也证明了利用对接结构域来分开连接的模块。在委内瑞拉链球菌中,第一个参与红霉素生物合成的蛋白质(DEBS1)与融合到C末端的DEBS硫酯酶(DEBS1-TE)一起表达,从而导致三酮内酯产物的产生。 DEBS1-TE的分离导致三酮化合物内酯的产生量为50%,这与吡咯霉素系统中的观察结果一致。已发表的工作表明,DEBS装载模块具有轻松的底物特异性,除通常观察到的通常以丙酸酯为起始剂的单元外,还可以掺入乙酸酯,丁酸酯和异丁酸酯。但是,在当前的研究中,当DEBS装载模块与具有匹配对接结构域的模块1分开时,观察到起始单元发生了巨大变化,有利于异丁酸酯衍生的三酮内酯。解剖的PKS系统中,起始单元偏好的明显变化导致了对酰基负载,脱负载以及从AT到ACP结构域的水解和转移的动力学的深刻见解。除了分离具有停靠结构域的多模块PKS多肽外,还显示了单个离散模块BorA5从borrelidin PKS的单个催化结构域可以表达为独立蛋白,同时在体外保持催化功能。这项工作为该模块的进一步研究提供了基础,该模块被提议具有迭代功能,可催化三轮链延长。

著录项

  • 作者

    Yan John Kam;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号