首页> 外文OA文献 >Phenotypic and Mutational Consequences of Mitochondrial ETC Genetic Damage
【2h】

Phenotypic and Mutational Consequences of Mitochondrial ETC Genetic Damage

机译:线粒体ETC遗传损伤的表型和突变后果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genetic mutation is the ultimate source of new phenotypic variation in populations. The importance of mutation cannot be understated, and constitutes a significant evolutionary force. Although single mutations may have little to no impact on organismal performance or fitness, when multiplied across the total number of potential sites within the genome, mutation can have a large impact. Accurate measurement of the rates, molecular mechanisms, and distributions of effects of mutations are critical for many applications of evolutionary theory. Despite the importance of both deleterious and beneficial mutations, their genome-wide patterns and phenotypic consequences are poorly understood when considering the mitochondrial genome. Mitochondria are organelles that are essential for eukaryotic life. They contain their own genome and generate bioenergy (ATP) necessary to sustain life via the electron transport chain (ETC). Because of their role in eukaryotic physiology, understanding how mitochondrial genetic and phenotypic variation can impact populations and evolutionary outcomes is essential. Past studies have implicated DNA-damaging oxidative stress as a source of mutations within somatic tissue, but there is a gap in knowledge regarding its role in heritable damage within the germ line. In this thesis, I aimed to test this possibility by characterizing the phenotypic and mutational consequences of high intracellular ROS levels caused by mitochondrial ETC genetic damage. I performed experiments using Caenorhabditis elegans ETC mutant, gas-1, and mutation-accumulation (MA) lines generated from this ancestral genotype. I quantified organismal fitness (fecundity and longevity), reactive oxygen species (ROS) levels, mitochondrial membrane potential (delta psi m), and ATP levels in these lines, and compared the results to those from a set of wildtype control lines. I begin with a general introduction to the hypothesis and the C. elegans system in Chapter I. In Chapter II, I report the findings from this work. In short, I found that while gas-1 MA lines began the experiment with low lifetime fecundity in comparison to the wildtype strain, their fecundity showed no further decline as expected, and even exhibited higher fecundity levels on days 3-5 of reproduction relative to the gas-1 progenitor. The gas-1 progenitor exhibited higher rates of ROS compared to wildtype, whereas the MA lines reverted back to wildtype levels; a similar pattern was observed for delta psi m, while ATP levels were low in the gas-1 progenitor and remained low in the MA lines. I interpret these findings in light of high-throughput sequencing results from these lines showing that, while nuclear and mitochondrial DNA mutation rates were equal to wildtype in these lines, the genomic pattern of mutation was highly nonrandom and indicative of selection for beneficial or compensatory sequence changes. Because ROS levels declined to wildtype in the evolved (MA), this study was unable to address whether ROS is a major contributor to heritable mutation in this system. I hypothesize that, in addition to their putatively compensatory genetic changes, gas-1 lineages experienced physiological compensation allowing them to survive, and that this was associated with a u22slow livingu22 phenotype. In Chapter III, I summarize general conclusions and implications of this study and end by providing suggestions for further study.
机译:遗传突变是种群中新表型变异的最终来源。突变的重要性不可低估,它构成了重要的进化力量。尽管单个突变可能对机体性能或适应性影响很小甚至没有影响,但是如果将其乘以基因组中潜在位点的总数,则突变会产生很大的影响。准确测量突变率,分子机制和效应分布对于进化论的许多应用至关重要。尽管有害和有益突变都非常重要,但在考虑线粒体基因组时,对它们的全基因组模式和表型后果知之甚少。线粒体是真核生物必不可少的细胞器。它们包含自己的基因组,并通过电子传输链(ETC)产生维持生命所需的生物能(ATP)。由于它们在真核生理中的作用,因此了解线粒体遗传和表型变异如何影响种群和进化结果至关重要。过去的研究表明,破坏DNA的氧化应激是体细胞组织内突变的来源,但关于其在种系内可遗传性损伤中的作用的知识尚缺乏。在本文中,我旨在通过表征线粒体ETC遗传损伤引起的细胞内ROS含量高的表型和突变后果来测试这种可能性。我使用秀丽隐杆线虫ETC突变体,gas-1和由该祖先基因型产生的突变积累(MA)品系进行了实验。我量化了这些品系中的生物适应性(生殖力和寿命),活性氧(ROS)水平,线粒体膜电位(δpsi m)和ATP含量,并将结果与​​一组野生型对照品系进行了比较。在第一章中,我首先对该假设和秀丽隐杆线虫系统进行了一般性介绍。在第二章中,我报告了这项工作的发现。简而言之,我发现与野生型菌株相比,gas-1 MA品系开始时的生命力较低,而繁殖力却没有如预期的那样进一步下降,甚至在繁殖的第3-5天表现出更高的繁殖力水平。 gas-1祖细胞。与野生型相比,gas-1祖细胞显示出更高的ROS率,而MA系又恢复了野生型水平。 Δpsim观察到了类似的模式,而gas-1祖细胞中的ATP水平较低,而MA系中的ATP水平仍然较低。我根据这些品系的高通量测序结果解释了这些发现,这些结果表明,尽管在这些品系中核和线粒体DNA突变率与野生型相同,但突变的基因组模式高度非随机,并表明选择有益的或补偿性的序列变化。由于ROS水平在进化(MA)中下降为野生型,因此该研究无法解决ROS是否是该系统中可遗传突变的主要因素。我假设,除了其假定的补偿性遗传变化外,gas-1谱系还经历了生理补偿,使它们得以生存,并且这与“慢活”的表型有关。在第三章中,我总结了本研究的一般结论和启示,并为进一步研究提供了建议。

著录项

  • 作者

    Lue Michael James;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号