首页> 外文OA文献 >Understanding Cue Utility in Controlled Evasive Driving Manoeuvres: Optimizing Vestibular Cues for Simulator Human Abilities
【2h】

Understanding Cue Utility in Controlled Evasive Driving Manoeuvres: Optimizing Vestibular Cues for Simulator Human Abilities

机译:理解可控逃逸驾驶操作中的提示效用:优化模拟器和人类能力的前庭线索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most daily driving tasks are of low bandwidth and therefore the relatively slow visual system receives enough cue information to perform the task in a manner that is statistically indistinguishable from reality. On the other hand, evasive maneuvers are of such a high bandwidth that waiting for the visual cues to change is too slow and skilled drivers use steering torques and vestibular motion cues to know how the car is responding in order to make rapid corrective actions. In this study we show for evasive maneuvers on snow and ice, for which we have real world data from skilled test drivers, that the choice of motion cuing algorithm (MCA) settings has a tremendous impact on the saliency of motion cues and their similarity with reality. We demonstrate this by introducing a novel optimization scheme to optimize the classic MCA in the context of an MCA-Simulator-Driver triplet of constraints. We incorporate the following four elements to tune the MCA for a particular maneuver: 1) acceleration profiles of the maneuver observed in reality, 2) vestibular motion perception model, 3) motion envelope constraints of the simulator, and 4) a set of heuristics extracted from the literature about human motion perception (i.e. coherence zones). Including these elements in the tuning process, notwithstanding the easiness of the tuning process, respects motion platform constraints and considers human perception. Moreover the inevitable phase and gain errors arising as a major consequence of MCA are always kept within the human coherence zones, and subsequently are not perceptible as false cues. It is expected that this approach to MCA tuning will increase the transfer of training from simulator to reality for evasive driving maneuvers where students need training most and are most dangerous to perform in reality.
机译:大多数日常驾驶任务都是低带宽的,因此相对较慢的视觉系统会收到足够的提示信息,以统计上与现实无法区分的方式执行任务。另一方面,规避操作具有很高的带宽,以至于等待视觉提示发生变化的速度太慢,熟练的驾驶员会使用转向扭矩和前庭运动提示来了解汽车的反应,以便迅速采取纠正措施。在这项研究中,我们展示了针对冰雪上的躲避动作,我们已经从熟练的测试驾驶员那里获得了真实的数据,运动提示算法(MCA)设置的选择对运动提示的显着性及其与现实。我们通过在MCA-Simulator-Driver三元组约束的上下文中引入新颖的优化方案来优化经典MCA来证明这一点。我们结合以下四个元素来针对特定操作调整MCA:1)在实际中观察到的操作的加速度曲线; 2)前庭运动感知模型; 3)模拟器的运动包络约束;以及4)提取的启发式方法集摘自有关人类运动感知(即相干区域)的文献。尽管调整过程很容易,但在调整过程中包括这些元素,仍要尊重运动平台的约束并考虑到人类的感知。此外,由于MCA的主要后果而产生的不可避免的相位和增益误差始终保持在人类的一致区域内,因此,不能将其视为错误提示。可以预期,这种MCA调整方法将增加培训从模拟器到现实的转移,从而用于规避驾驶操作,在这种情况下,学生最需要培训,并且在现实中表现最危险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号