首页> 外文OA文献 >A physical model of quantum cascade lasers: Application to GaAs, GaN and SiGe devices
【2h】

A physical model of quantum cascade lasers: Application to GaAs, GaN and SiGe devices

机译:量子级联激光器的物理模型:应用于Gaas,GaN和siGe器件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The philosophy behind this work has been to build a predictive bottom up physical model of quantum cascade lasers (QCLs) for use as a design tool, to interpret experimental results and hence improve understanding of the physical processes occurring inside working devices and as a simulator for developing new material systems. The standard model uses the envelope function and effective mass approximations to solve two complete periods of the QCL under an applied bias. Other models, such as k·p and empirical pseudopotential, have been employed in p-type systems where the more complex band structure requires it. The resulting wave functions are then used to evaluate all relevant carrier-phonon, carrier-carrier and alloy scattering rates from each quantised state to all others within the same and the neighbouring period. This information is then used to construct a rate equation for the equilibrium carrier density in each subband and this set of coupled rate equations are solved self-consistently to obtain the carrier density in each eigenstate. The latter is a fundamental description of the device and can be used to calculate the current density and gain as a function of the applied bias and temperature, which in turn yields the threshold current and expected temperature dependence of the device characteristics. A recent extension which includes a further iteration of an energy balance equation also yields the average electron (or hole) temperature over the subbands. This paper will review the method and describe its application to mid-infrared and terahertz, GaAs, GaN, SiGe cascade laser designs.
机译:这项工作的基本原理是建立量子级联激光器(QCL)的预测性自下而上的物理模型,以用作设计工具,解释实验结果,从而增进对工作设备内部发生的物理过程的理解,并作为一种模拟器开发新的材料系统。标准模型使用包络函数和有效质量逼近来在施加的偏差下求解QCL的两个完整周期。其他模型,例如k·p和经验伪势,已用于p型系统中,在这种系统中,更复杂的能带结构需要它。然后,将得到的波函数用于评估在相同和相邻期间内,从每个量化状态到所有其他状态的所有相关的载流子,声子,载流子和合金的散射速率。然后,该信息用于构造每个子带中平衡载流子密度的速率方程,并且这组耦合的速率方程被自洽求解,以获得每个本征态的载流子密度。后者是该器件的基本描述,可用于计算电流密度和增益,该电流密度和增益是所施加偏置和温度的函数,进而产生阈值电流和器件特性的预期温度依赖性。最近的扩展(包括能量平衡方程的进一步迭代)还产生了子带上的平均电子(或空穴)温度。本文将回顾该方法,并描述其在中红外和太赫兹,GaAs,GaN,SiGe级联激光器设计中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号