首页> 外文OA文献 >Deep Multi-task Attribute-driven Ranking for Fine-grained Sketch-based Image Retrieval
【2h】

Deep Multi-task Attribute-driven Ranking for Fine-grained Sketch-based Image Retrieval

机译:用于细粒度基于草图的图像检索的深度多任务属性驱动排名

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fine-grained sketch-based image retrieval (SBIR) aims to go beyond conventional SBIR to perform instance- level cross-domain retrieval: finding the specific photo that matches an input sketch. Existing methods focus on designing/learning good features for cross-domain matching and/or learning cross-domain matching functions. However, they neglect the semantic aspect of retrieval, i.e., what meaningful object properties does a user try encode in her/his sketch? We propose a fine-grained SBIR model that exploits semantic attributes and deep feature learning in a complementary way. Specifically, we perform multi-task deep learning with three objectives, including: retrieval by fine-grained ranking on a learned representation, attribute prediction, and attribute-level ranking. Simultaneously predicting semantic attributes and using such predictions in the ranking procedure help retrieval results to be more semantically relevant. Importantly, the introduction of semantic attribute learning in the model allows for the elimination of the otherwise prohibitive cost of human annotations required for training a fine-grained deep ranking model. Experimental results demonstrate that our method outperforms the state-of-the-art on challenging fine-grained SBIR benchmarks while requiring less annotation.
机译:细粒度的基于草图的图像检索(SBIR)的目标是超越常规SBIR来执行实例级跨域检索:查找与输入草图匹配的特定照片。现有方法集中于设计/学习用于跨域匹配和/或学习跨域匹配功能的良好特征。但是,他们忽略了检索的语义方面,即用户尝试在他/他的草图中编码哪些有意义的对象属性?我们提出了一种细粒度的SBIR模型,该模型以互补的方式利用语义属性和深度特征学习。具体来说,我们执行具有三个目标的多任务深度学习,包括:通过对学习的表示的细粒度排名进行检索,属性预测和属性级别排名。同时预测语义属性并在排序过程中使用此类预测有助于检索结果在语义上更相关。重要的是,在模型中引入语义属性学习可以消除训练细粒度深度排名模型所需的人工注释的其他过高成本。实验结果表明,我们的方法在具有挑战性的细粒度SBIR基准测试中表现优于最新技术,同时需要更少的注释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号