首页> 外文期刊>Neurocomputing >Cross-modal subspace learning for fine-grained sketch-based image retrieval
【24h】

Cross-modal subspace learning for fine-grained sketch-based image retrieval

机译:跨模态子空间学习,用于基于草图的细粒度图像检索

获取原文
获取原文并翻译 | 示例

摘要

AbstractSketch-based image retrieval (SBIR) is challenging due to the inherent domain-gap between sketch and photo. Compared with pixel-perfect depictions of photos, sketches are iconic renderings of the real world with highly abstract. Therefore, matching sketch and photo directly using low-level visual clues are insufficient, since a common low-level subspace that traverses semantically across the two modalities is non-trivial to establish. Most existing SBIR studies do not directly tackle this cross-modal problem. This naturally motivates us to explore the effectiveness of cross-modal retrieval methods in SBIR, which have been applied in the image-text matching successfully. In this paper, we introduce and compare a series of state-of-the-art cross-modal subspace learning methods and benchmark them on two recently released fine-grained SBIR datasets. Through thorough examination of the experimental results, we have demonstrated that the subspace learning can effectively model the sketch-photo domain-gap. In addition we draw a few key insights to drive future research.
机译: 摘要 基于草图的图像检索(SBIR)具有挑战性,因为草图和照片之间存在固有的领域鸿沟。与照片的像素完美描绘相比,草图是具有高度抽象的真实世界的标志性渲染。因此,直接使用低级视觉线索匹配草图和照片是不够的,因为建立跨越两种模态的语义遍历的通用低级子空间是不容易的。现有的大多数SBIR研究都不能直接解决这种交叉模式问题。这自然促使我们探索SBIR中的跨模式检索方法的有效性,该方法已成功应用于图像-文本匹配中。在本文中,我们介绍并比较了一系列最新的交叉模态子空间学习方法,并以两个最近发布的细粒度SBIR数据集为基准。通过对实验结果的彻底检查,我们证明了子空间学习可以有效地对草图照片域间隙进行建模。此外,我们得出了一些重要的见解,以推动未来的研究。

著录项

  • 来源
    《Neurocomputing》 |2018年第22期|75-86|共12页
  • 作者单位

    Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications;

    National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences;

    Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications;

    SketchX Lab, School of Electronic Engineering and Computer Science, Queen Mary University of London;

    Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications;

    National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences;

    SketchX Lab, School of Electronic Engineering and Computer Science, Queen Mary University of London;

    Communications and Signal Processing Group, Victoria University of Wellington;

    Pattern Recognition and Intelligent System Laboratory, Beijing University of Posts and Telecommunications;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cross-modal subspace learning; Sketch-based image retrieval; Fine-grained;

    机译:跨模式子空间学习;基于草图的图像检索;细粒度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号