首页> 外文期刊>IEEE Transactions on Image Processing >Synergistic Instance-Level Subspace Alignment for Fine-Grained Sketch-Based Image Retrieval
【24h】

Synergistic Instance-Level Subspace Alignment for Fine-Grained Sketch-Based Image Retrieval

机译:细粒度基于草图的图像检索的协同实例级子空间对齐

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of fine-grained sketch-based image retrieval. By performing instance-level (rather than category-level) retrieval, it embodies a timely and practical application, particularly with the ubiquitous availability of touchscreens. Three factors contribute to the challenging nature of the problem: 1) free-hand sketches are inherently abstract and iconic, making visual comparisons with photos difficu 2) sketches and photos are in two different visual domains, i.e., black and white lines versus color pixels; and 3) fine-grained distinctions are especially challenging when executed across domain and abstraction-level. To address these challenges, we propose to bridge the image-sketch gap both at the high level via parts and attributes, as well as at the low level via introducing a new domain alignment method. More specifically, first, we contribute a data set with 304 photos and 912 sketches, where each sketch and image is annotated with its semantic parts and associated part-level attributes. With the help of this data set, second, we investigate how strongly supervised deformable part-based models can be learned that subsequently enable automatic detection of part-level attributes, and provide pose-aligned sketch-image comparisons. To reduce the sketch-image gap when comparing low-level features, third, we also propose a novel method for instance-level domain-alignment that exploits both subspace and instance-level cues to better align the domains. Finally, fourth, these are combined in a matching framework integrating aligned low-level features, mid-level geometric structure, and high-level semantic attributes. Extensive experiments conducted on our new data set demonstrate effectiveness of the proposed method.
机译:我们研究了基于细粒度草图的图像检索的问题。通过执行实例级别(而不是类别级别)的检索,它体现了及时而实际的应用,尤其是在无处不在的触摸屏上。造成这一问题具有挑战性的因素有三个:1)徒手素描本质上是抽象的和标志性的,很难与照片进行视觉比较; 2)草图和照片位于两个不同的视觉域中,即黑白线与彩色像素;和3)跨领域和抽象级别执行时,细粒度的区别特别具有挑战性。为了应对这些挑战,我们建议通过部分和属性在高层次上以及通过引入新的域对齐方法在低层次上弥合图像素描差距。更具体地说,首先,我们提供一个包含304张照片和912个草图的数据集,其中每个草图和图像都用其语义部分和关联的部分级别属性进行注释。其次,借助此数据集,我们研究了如何学习受严格监督的可变形基于零件的模型,这些模型随后可以自动检测零件级属性,并提供姿态对齐的草图图像比较。为了减少比较低级特征时的草图间隙,第三,我们还提出了一种用于实例级域对齐的新方法,该方法利用子空间和实例级线索来更好地对齐域。最后,第四,将它们组合在一个匹配框架中,该框架集成了对齐的低级特征,中级几何结构和高级语义属性。在我们的新数据集上进行的大量实验证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号