首页> 外文OA文献 >High dimensional nonstationary time series modelling with generalized dynamic semiparametric factor model
【2h】

High dimensional nonstationary time series modelling with generalized dynamic semiparametric factor model

机译:基于广义动态半参数因子模型的高维非平稳时间序列建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

(High dimensional) time series which reveal nonstationary and possibly periodic behavior occur frequently in many fields of science. In this article, we separate the modeling of high dimensional time series to time propagation of low dimensional time series and high dimensional time invariant functions via functional factor analysis. We propose a two-step estimation procedure. At the first step, we detect the deterministic trends of the time series by incorporating time basis selected by the group Lasso-type technique and choose the space basis based on smoothed functional principal component analysis. We show properties of this estimator under various situations extending current variable selection studies. At the second step, we obtain the detrended low dimensional stochastic process, but it also poses an important question: is it justified, from an inferential point of view, to base further statistical inference on the estimated stochastic time series? We show that the difference of the inference based on the estimated time series and true unobserved time series is asymptotically negligible, which finally allows one to study the dynamics of the whole high-dimensional system with a low dimensional representation together with the deterministic trend. We apply the method to our motivating empirical problems: studies of the dynamic behavior of temperatures (further used for pricing weather derivatives), implied volatilities and risk patterns and correlated brain activities (neuro-economics related) using fMRI data, where a panel version model is also presented.
机译:揭示非平稳和可能周期性行为的(高维)时间序列在许多科学领域中经​​常发生。在本文中,我们通过功能因子分析将高维时间序列的建模与低维时间序列和高维时间不变函数的时间传播分开。我们提出了两步估算程序。第一步,我们通过合并组套索类型技术选择的时间基准来检测时间序列的确定趋势,并基于平滑的功能主成分分析选择空间基准。我们在扩展当前变量选择研究的各种情况下显示了该估计量的性质。在第二步中,我们获得了趋势不大的低维随机过程,但它也提出了一个重要的问题:从推论的角度来看,是否有必要根据估计的随机时间序列进一步进行统计推论是合理的?我们表明,基于估计的时间序列和真实的未观察到的时间序列的推论差异在渐近上可忽略不计,这最终使人们可以研究具有低维表示形式的整个高维系统的动力学以及确定性趋势。我们将这种方法应用于激发经验的问题:使用fMRI数据(面板模型)研究温度的动态行为(进一步用于对天气衍生物定价),隐含的波动率和风险模式以及相关的大脑活动(与神经经济学相关)还介绍了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号