首页> 外文OA文献 >An intelligent diagnostic system for screening newborns
【2h】

An intelligent diagnostic system for screening newborns

机译:一种用于筛查新生儿的智能诊断系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The goal of this research is to devise and develop an intelligent system for analyzing heart sound signals, able to support physicians in the diagnosis of heart diseases in newborns. Many studies have been conducted in recent years to automatically differentiate normal heart sounds from heart sounds with pathological murmurs using audio signal processing in newborns. Serious cardia pathology may exist without symp- toms. Since heart murmurs are the first signs of heart disease, we screen newborns for normal (innocent) and pathological murmurs. This thesis presents a variety of techniques in time-frequency domain such as Cepstrum, Shannon energy, Bispe trum, and Wigner Bispe trum for feature extraction. A comparison of these techniques is considered to feature selection which has been used to reduce the size of the feature vector. In the final step, different lassi ers and techniques, e.g., Multi layer perc eptron (MLP), decision tree, Classification and Regression Trees (CART) and ensemble of decision trees, are applied on data in order to a hieve highest performan e. High classifi cation accuracy, sensitivity, and specifity have been obtained on the given data by CART. The validation process has been performed on a balanced dataset of 116 heart sound signals taken from healthy and unhealthy medical cases.
机译:这项研究的目的是设计和开发一种用于分析心音信号的智能系统,该系统能够支持医生诊断新生儿的心脏病。近年来,已进行了许多研究,通过新生儿的音频信号处理,自动将正常的心音与带有病态杂音的心音区分开。可能存在严重的心脏病理,无症状。由于心脏杂音是心脏病的最初征兆,因此我们对新生儿进行了正常(无辜)和病理性杂音筛查。本文提出了时频域中的多种特征提取技术,例如倒谱,香农能量,Bispe trum和Wigner Bispe trum。这些技术的比较被认为是用来减少特征向量大小的特征选择。在最后一步中,对数据应用不同的标签和技术,例如多层Perc第六元(MLP),决策树,分类和回归树(CART)和决策树集合,以实现最高的性能。 CART在给定的数据上获得了很高的分类精度,灵敏度和特异性。已经对来自健康和不健康医疗案例的116种心音信号的平衡数据集执行了验证过程。

著录项

  • 作者

    Amiri Amir Mohammad;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号