首页> 外文OA文献 >Between-strand disulfides: Forbidden disulfides linking adjacent ß-Strands
【2h】

Between-strand disulfides: Forbidden disulfides linking adjacent ß-Strands

机译:链间二硫键:禁止将相邻的ß-链连接的二硫键

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Between-strand disulfides (BSDs) connect cysteine (Cys) residues across adjacent strands of β-sheets. There are four BSD types which can be found in regular β-structure: CSDs, which link residues immediately opposite each other in the β-structure (residues i and j); ETDs, which connect Cys out of register by one residue (i and j ± 1); BDDs, which join Cys at positions i and j ± 2; and BFDs, which link residues i and j ± 3. Formation of these disulfides was initially predicted to be forbidden, producing too much local strain in the protein fold. However, BSDs do exist in nature. Significantly, their high levels of strain allow them to be involved in redox processes under physiological conditions. Here we characterise BSD motifs found in the Protein Data Bank (PDB), discussing important intrinsic factors, such as the disulfide conformation and torsional strain, and extrinsic factors, such as the influence of the β-sheet environment on the disulfide and vice versa. We also discuss the biological importance of BSDs, including the prevalence of non-homologous examples in the PDB, the conservation of BSD motifs amongst related proteins (BSD clusters) and experimental evidence for BSD redox activity. For clusters of homologous BSDs we present detailed data of the disulfide properties and the variations of these properties amongst the “redundant” structures. Identification of disulfides with the potential to be involved in biological redox processes via the analysis of these data will provide important insights into the function and mechanism of BSD-containing proteins. Characterisation of thiol-based redox signalling pathways will lead to significant breakthroughs in understanding the molecular basis of oxidative stress and associated pathways, such as ageing and neurodegenerative diseases.
机译:链间二硫化物(BSD)将半胱氨酸(Cys)残基连接到β-折叠的相邻链上。在规则的β结构中可以找到四种BSD类型:CSD,它们将在β结构中彼此相对的残基连接在一起(残基i和j); ETD,通过一个残基(i和j±1)将Cys连接到寄存器外; BDD,在位置i和j±2处连接Cys;和BFDs,它们连接残基i和j±3。最初预测这些二硫键的形成被禁止,从而在蛋白质折叠中产生过多的局部应变。但是,自然界中确实存在BSD。值得注意的是,它们的高水平应变使它们能够在生理条件下参与氧化还原过程。在这里,我们表征蛋白质数据库(PDB)中的BSD主题,讨论重要的内在因素,例如二硫键构象和扭转应变,以及外在因素,例如β-折叠环境对二硫键的影响,反之亦然。我们还讨论了BSD的生物学重要性,包括PDB中非同源实例的流行,相关蛋白(BSD簇)中BSD图案的保守性以及BSD氧化还原活性的实验证据。对于同源BSD的簇,我们提供了二硫键性质的详细数据以及这些性质在“冗余”结构之间的变化。通过对这些数据的分析,鉴定出可能参与生物氧化还原过程的二硫化物,将对含BSD蛋白质的功能和机理提供重要的见识。基于硫醇的氧化还原信号传导途径的表征将在理解氧化应激和相关途径(例如衰老和神经退行性疾病)的分子基础方面取得重大突破。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号