首页> 外文OA文献 >Continuous-time non-linear non-gaussian state-space modeling of electroencephalography with sequential Monte Carlo based estimation
【2h】

Continuous-time non-linear non-gaussian state-space modeling of electroencephalography with sequential Monte Carlo based estimation

机译:脑电图的连续时间非线性非高斯状态空间建模,基于顺序蒙特卡洛估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biomedical time series are non-stationary stochastic processes with hidden dynamics that can be modeled by state-space models (SSMs), and processing of which can be cast into optimal filtering problems for SSMs. The existing studies assume discrete-time linear Gaussian SSMs with estimation solved analytically by Kalman filtering for biomedical signals which are continuous, non-Gaussian and non-linear. However, general non-linear non-Gaussian models admit no closed form filtering solutions. This research investigates the general framework of continuoustime non-linear and non-Gaussian SSMs with sequential Monte Carlo (SMC) estimation for biomedical signals generally, electroencephalography (EEG) signal in particular, to solve two of its analysis problems. Firstly, this study proposes timevarying autoregressive (TVAR) SSMs with non-Gaussian state noise to capture abrupt and smooth parameter changes that are inappropriately modeled by Gaussian models, for parametric time-varying spectral estimation of event-related desynchronization (ERD). Evaluation results show superior parameter tracking performance and hence accurate ERD estimation by the proposed model. Secondly, a partially observed diffusion model is proposed for more natural modeling the continuous dynamics and irregularly spaced data in single-trial event-related potentials (ERPs) for single-trial estimation of ERPs in noise. More efficient Rao- Blackwellized particle filter (RBPF) is used. Evaluation on simulated and real auditory brainstem response (ABR) data shows significant reduction in noise with the underlying ERP dynamics clearly extracted. In addition, two non-linear non- Gaussian stochastic volatility (SV) models are proposed for better modeling of non- Gaussian dynamics of volatility in EEG noise especially of impulsive type. Application to denoising of simulated ABRs with artifacts shows well estimated volatility pattern and better elimination of impulsive noise with SNR improvement of 12.46dB by the best performing non-linear Cox-Ingersoll-Ross process.
机译:生物医学时间序列是具有隐藏动态的非平稳随机过程,可以通过状态空间模型(SSM)进行建模,并将其处理转化为SSM的最佳过滤问题。现有研究假设离散时间线性高斯SSM,并通过卡尔曼滤波对连续,非高斯和非线性的生物医学信号进行解析求解。但是,一般的非线性非高斯模型不接受封闭形式的滤波解决方案。这项研究调查了连续时间非线性和非高斯SSM的总体框架,通常对生物医学信号,尤其是脑电图(EEG)信号进行顺序蒙特卡罗(SMC)估计,以解决其两个分析问题。首先,本研究提出了具有非高斯状态噪声的时变自回归(TVAR)SSM,以捕获高斯模型不适当建模的突变和平滑参数变化,以进行事件相关去同步(ERD)的参数时变频谱估计。评估结果表明,该模型具有出色的参数跟踪性能,因此可以实现准确的ERD估计。其次,提出了一种局部观测的扩散模型,用于更自然地建模单次事件相关电位(ERP)中的连续动力学和不规则间隔的数据,以便对噪声中的ERP进行单次估计。使用了更高效的Rao-Blackwellized粒子过滤器(RBPF)。对模拟听觉和真实听觉脑干反应(ABR)数据的评估显示,噪声得到了显着降低,同时清晰地提取了潜在的ERP动态。此外,提出了两个非线性非高斯随机波动率(SV)模型,以便更好地对EEG噪声(尤其是脉冲类型)的非高斯波动率动力学建模。通过具有最佳性能的非线性Cox-Ingersoll-Ross工艺,在具有伪影的模拟ABR降噪中的应用显示出估计的挥发性模式和更好的脉冲噪声消除效果,SNR改善了12.46dB。

著录项

  • 作者

    Ting Chee Ming;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号