首页> 外文会议>Data Fusion amp; Target Tracking Conference (DFamp;TT 2012): Algorithms amp; Applications, 9th IET >An application of Sequential Monte Carlo samplers: An alternative to particle filters for non-linear non-Gaussian sequential inference with zero process noise
【24h】

An application of Sequential Monte Carlo samplers: An alternative to particle filters for non-linear non-Gaussian sequential inference with zero process noise

机译:顺序蒙特卡洛采样器的应用:零噪声的非线性非高斯顺序推理的粒子滤波器的替代方法

获取原文
获取原文并翻译 | 示例

摘要

Particle filters are not applicable in sequential parameter estimation scenarios, ie scenarios involving zero process noise. Sequential Monte Carlo (SMC) samplers provide an alternative sequential Monte-carlo approximation to particle filters that can address this issue. This paper aims to provide a description of SMC samplers that is accessible to an engineering audience and illustrate the utility of SMC samplers through their application to a specific problem. The problem involves processing a stream of bearings-only measurements to perform localisation of a stationary target. The SMC sampler solution is shown to outperform an Extended and Unscented Kalman filter in nonlinear scenarios (as defined by a novel metric for nonlinearity that this paper describes). The SMC sampler offers a computational cost that is near-constant over time on average. Future work aims to investigate the utility of Approximate Bayesian Computation and apply the technique within a Simultaneous Localisation and Mapping context.
机译:粒子滤波器不适用于顺序参数估计方案,即涉及零过程噪声的方案。顺序蒙特卡洛(SMC)采样器为粒子滤波器提供了一种可选的顺序蒙特卡洛近似,可以解决此问题。本文旨在为工程设计人员提供SMC采样器的描述,并说明SMC采样器通过将其应用于特定问题的效用。问题涉及处理纯方位测量流以执行固定目标的定位。所示SMC采样器解决方案在非线性场景(如本文描述的针对非线性的新指标所定义)的性能优于扩展且无味的卡尔曼滤波器。 SMC采样器提供的计算成本平均随时间平均保持恒定。未来的工作旨在研究近似贝叶斯计算的实用性,并将该技术应用于同时定位和制图的环境中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号