首页> 外文OA文献 >Cortical bone mineral status evaluated by pQCT, quantitative backscattered electron imaging and polarized light microscopy
【2h】

Cortical bone mineral status evaluated by pQCT, quantitative backscattered electron imaging and polarized light microscopy

机译:通过pQCT,定量反向散射电子成像和偏振光显微镜评估皮质骨矿物质状态

摘要

Synergy can be achieved using multiple imaging modalities to reveal cortical bone adaptation at organ, tissue and ultrastructural levels. Peripheral quantitative computed tomography (pQCT) measurement showed significant regional variations of cortical bone mineral density (cBMD) in the distal tibia and distal radius, independent of menopausal status. The higher cBMD was related to its prevalent compressive stress. Circularly polarized light (CPL) microscopy supported this by showing a preferred transverse to oblique collagen fibre orientation. Quantitative backscattered electron (QBSE) imaging study of osteon morphometry and degree of mineralisation in the cadaveric tibia and radius showed that the variation of cBMD was due to differences in percentage of intracortical porosity (IP), rather than to the variation of mineralisation. The distal tibia had significantly lower cBMD than the distal radius. This lower cBMD was compensated by having greater cortical thickness, polar moment of inertia, and collagen fibre orientation index. The tibia, being subject to habitual dynamic compressive loading as compared with the non-weight-bearing nature of the radius, may activate a higher remodelling rate, which does not allow full secondary mineralisation. This was evidenced in the study showed lower cBMD and greater percentage of IP; thus, the compensatory increase in bone geometry is meant to withstand the sustained bend and torsion loading in this region. This chapter demonstrates that compressive loading is more osteogenic bringing about greater regional BMD. The design of exercise intervention programs to enhance bone quality should consider the strain mode effect. Compensation between the material density and structure is evidenced which allows bone strengthening. Regional bone adaptation, as revealed by multiple imaging modalities, allows better understanding of changes at different levels of bone organization.
机译:可以使用多种成像方式在器官,组织和超微结构水平揭示皮质骨适应性,从而实现协同作用。外周定量计算机断层扫描(pQCT)测量显示,胫骨远端和radius骨远端的皮质骨矿物质密度(cBMD)出现明显的区域变化,与绝经状态无关。 cBMD较高与其普遍的压应力有关。圆偏振光(CPL)显微镜通过显示优选的横向到倾斜的胶原纤维取向来支持这一点。尸体胫骨和radius骨的骨形态和矿化程度的定量背散射电子(QBSE)成像研究表明,cBMD的变化是由于皮质内孔隙率(IP)百分比的差异,而不是矿化的变化。胫骨远端的cBMD明显低于radius骨远端。较低的cBMD通过更大的皮质厚度,极地惯性矩和胶原纤维取向指数得到补偿。与the骨的非承重性质相比,胫骨承受惯性的动态压缩载荷,可能会激活较高的重塑率,从而不允许进行次生矿化。研究表明,较低的cBMD和较高的IP百分比;因此,骨骼几何形状的补偿性增加旨在承受该区域持续的弯曲和扭转载荷。本章表明,压缩载荷具有更多的成骨性,从而导致更大的区域骨密度。旨在提高骨骼质量的运动干预计划的设计应考虑应变模式的影响。材料密度和结构之间的补偿被证明可以使骨骼增强。如多种成像方式所揭示的,局部骨适应性可以更好地了解不同层次骨组织的变化。

著录项

  • 作者

    Lai YM; Chan WC;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号