首页>
外文OA文献
>L2 error estimates for a class of any order finite volume schemes over quadrilateral meshes
【2h】
L2 error estimates for a class of any order finite volume schemes over quadrilateral meshes
展开▼
机译:四边形网格上一类任意阶有限体积方案的L2误差估计
展开▼
免费
页面导航
摘要
著录项
引文网络
相似文献
相关主题
摘要
In this paper, we propose a unified $ L^2 $ error estimate for a class of bi-$r$ finite volume (FV) schemes on a quadrilateral mesh for elliptic equations, where $rge 1$ is arbitrary. The main result is to show that the FV solution possesses the optimal order $L^2 $ error provided that $(u,f) in H^{r+1} imes H^r $, where $u$ is the exact solution and $f$ is the source term of the elliptic equation. Our analysis includes two basic ideas: (1) By the Aubin--Nistche technique, the $L^2$ error estimate of an FV scheme can be reduced to the analysis of the difference of bilinear forms and right-hand sides between the FV and its corresponding finite element (FE) equations, respectively; (2) with the help of a special transfer operator from the trial to test space, the difference between the FV and FE equations can be estimated through analyzing the effect of some Gauss quadrature. Numerical experiments are given to demonstrate the proved results.
展开▼
机译:在本文中,我们为椭圆方程的四边形网格上的一类双$ r $有限体积(FV)方案提出了统一的$ L ^ 2 $误差估计。主要结果表明,如果$(u,f) in H ^ {r + 1} times H ^ r $,则FV解具有最优阶$ L ^ 2 $误差,其中$ u $是精确解,$ f $是椭圆方程的源项。我们的分析包括两个基本思想:(1)通过Aubin-Nistche技术,FV方案的$ L ^ 2 $误差估计可以简化为分析FV之间的双线性形式和右手边的差异。及其相应的有限元(FE)方程; (2)在试验到测试空间的特殊转移算子的帮助下,FV和FE方程之间的差异可以通过分析一些高斯正交效应来估算。数值实验证明了所证明的结果。
展开▼