首页> 外文OA文献 >Controls on the Kinematics of Slow-moving Landslides from Satellite Radar Interferometry and Mechanical Modeling
【2h】

Controls on the Kinematics of Slow-moving Landslides from Satellite Radar Interferometry and Mechanical Modeling

机译:卫星雷达干涉法和机械建模控制慢速滑坡的运动学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Landslides display a wide variety of behaviors ranging from slow persistent motion to rapid acceleration and catastrophic failure. Given the variety of possible behaviors, improvements to our understanding of landslide mechanics are critical for accurate predictions of landslide dynamics. Recent advances in remote sensing techniques, like satellite radar interferometry (InSAR), now enable high-resolution spatial and temporal measurements that provide insight into the mechanisms that control landslide behavior. In this dissertation, I use InSAR and high-resolution topographic data to identify 50 slow-moving landslides in the Northern California Coast Ranges and monitor their kinematics over 4 years. These landslides have similar mechanical properties and are subject to the same external forcings, which allows me to explore geometrical controls on kinematics. Each landslide displays distinct kinematic zones with different mean velocities that remain spatially fixed. Because these deformation patterns are sensitive to subsurface geometry, I employ a mathematical model to infer landslide thickness and find that these landslides exhibit a highly variable thickness and an irregular basal sliding surface. Time series analysis reveals that each landslide displays well-defined seasonal velocity changes with a periodicity of ∼ 1 year. These velocity variations are driven by precipitation- induced changes in pore-water pressure that lag the onset of rainfall by up to 40 days. Despite significant variations in geometry, I find no systematic differences in seasonal landslide behavior. To further explore how stress perturbations control landslide motion, I develop a mechanical model that reproduces both the displacement patterns observed at slow-moving landslides and the acceleration towards failure exhibited by catastrophic events. I find that catastrophic failure can only occur when the slip surface is characterized by rate-weakening friction and its spatial dimensions exceed a critical nucleation length that is shorter for higher effective stresses. These model simulations support my conclusions from the remote sensing analysis but also provide insight into the long-term evolution of landslides.This dissertation includes both previously published and unpublished co- authored material.
机译:滑坡表现出各种各样的行为,从缓慢的持续运动到快速加速和灾难性破坏。考虑到各种可能的行为,改善对滑坡力学的理解对于准确预测滑坡动力学至关重要。遥感技术的最新进展,例如卫星雷达干涉法(InSAR),现在可以实现高分辨率的时空测量,从而可以深入了解控制滑坡行为的机制。在本文中,我使用InSAR和高分辨率的地形数据来识别北加利福尼亚海岸山脉中的50个缓慢移动的滑坡,并在4年内对其运动进行监测。这些滑坡具有相似的机械特性,并且受到相同的外部作用力,这使我能够探索运动学上的几何控制方法。每个滑坡显示出不同的运动学带,这些运动带具有保持空间固定的平均速度。由于这些变形模式对地下几何形状很敏感,因此我采用数学模型来推断滑坡的厚度,发现这些滑坡具有高度变化的厚度和不规则的基底滑动面。时间序列分析表明,每个滑坡都表现出明确的季节性速度变化,周期约为1年。这些速度变化是由降水引起的孔隙水压力变化驱动的,该变化使降雨开始最多延迟40天。尽管几何形状存在很大差异,但我发现季节性滑坡行为没有系统性差异。为了进一步探讨应力扰动如何控制滑坡运动,我建立了一个机械模型,该模型可以重现在缓慢移动的滑坡上观察到的位移模式以及由灾难性事件表现出的加速破坏。我发现,只有当滑移表面具有速率减弱摩擦并且其空间尺寸超过临界成核长度(对于较高的有效应力而言较短)时,才会发生灾难性破坏。这些模型模拟不仅支持我从遥感分析中得出的结论,而且可以洞悉滑坡的长期演变。本文包括以前发表和未发表的合著材料。

著录项

  • 作者

    Handwerger Alexander;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号