首页> 外文OA文献 >Energy-efficient large medium-speed catamarans : hull form design by full-scale CFD simulations
【2h】

Energy-efficient large medium-speed catamarans : hull form design by full-scale CFD simulations

机译:高效节能的中速双体船:通过全面CFD模拟进行的船体形式设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large medium-speed catamarans are currently under development as a new class of vessel forudeconomically efficient and more environmentally sustainable fast sea transportation. Theiruddesign is based on current high-speed catamarans, to adopt advantages such as large deckudareas and low wave-making resistance, but they will operate at lower speeds and carry audhigher deadweight to obtain higher transport efficiency. They operate at speeds around theudmain drag hump, where the wave-making drag coefficient is at its maximum. Hence this speedudrange is usually avoided by boat designers no precise guidelines for hull form design of largeudmedium-speed catamarans are present to operate efficiently in this generally unfavourableudspeed spectrum.udLiterature has been surveyed to derive hull form parameters that provide low drag for monohullsudand catamaran vessels. Based on these findings a hull form family was developed withuddemihull slenderness ratios ranging from 9 to 15 and the hydrodynamic performance wasudevaluated at Froude numbers from 0.25 up to 0.49 to derive design parameters with theudlowest drag and highest transport efficiency. These parameters corresponds to vessel sizesudfrom 110 m to 190 m and speeds of 16 to 41 knots. A novel CFD-based approach has beenuddeveloped to provide more accuracy to the final drag prediction at full scale. It was verifiedudusing results of model scale experiments of a 98 m and a 130 m catamaran and validatedudwith results obtained from sea trial measurements, in deep as well as in shallow water. Furthermore,udits capability to replicate the flow past a typical deep partially ventilated transom has been investigated using model scale experiments. The key advantage of this method is that the same computational mesh can be used for model-scale verification and full-scale predictions.udThe computational full-scale simulation approach was found to be capable of predicting theuddrag force within 5% of results derived from full-scale measurements and extrapolated modeludtest data. In addition it has been shown to correctly predict steady and unsteady shallowudwater effects. Also the ventilation process of the transom stern has been experimentallyudvalidated and the ow feature in the stagnant zone past the partially ventilated transom wasudidentified as a non-shedding squashed horseshoe vortex. The lowest drag can be achieved for catamarans with demihull slenderness ratios of 11 to 13 and hulls of 150 m in length provided highest transport efficiency for speeds of 20 to 35 knots at a light displacement, and 170 m and 190 m for a medium and a heavy displacement respectively.udFinally, when comparing the results to contemporary large and fast catamarans carryingudequivalent deadweight and travelling at the same speed, fuel savings up to 40% can beudachieved if a hull of 150 m instead of 110 m length is used. This demonstrates that large mediumudcatamarans have the potential to be a fuel-efficient alternative for a successful futureudof fast sea transportation.
机译:大型中速双体船目前正在开发,作为一种新型的船舶,以实现经济上有效,环境更可持续的快速海上运输。他们的设计基于当前的高速双体船,具有甲板大,波浪阻力小等优点,但它们将以较低的速度运行并承受较高的载重量,从而获得更高的运输效率。它们以主阻力峰附近的速度运行,在该阻力峰处,造波阻力系数达到最大值。因此,船艇设计师通常避免这种速度/超距。对于这种大的/中速双体船,目前尚无大型中速双体船的船体形式设计的精确指南可以有效地运行。 udLiterature已被调查以得出可提供船体形式参数的参数。单壳 udand双体船的低阻力。基于这些发现,开发了船体形状系列, uddemihull细长比在9到15之间,并在弗洛德数从0.25到0.49的情况​​下对水动力性能进行了评估,以得出阻力最小和运输效率最高的设计参数。这些参数对应于110 m至190 m的船舶尺寸 ud和16至41节的速度。一种新颖的基于CFD的方法已经被开发出来,可以为全尺寸的最终阻力预测提供更高的准确性。验证使用了98 m和130 m双体船的模型规模实验的结果,并验证了从深海和浅水中的海试测量获得的结果。此外,已经使用模型规模实验研究了其通过典型的深层部分通风口板复制流量的能力。该方法的主要优点是可以将相同的计算网格用于模型规模验证和全尺度预测。 ud发现了计算全尺度仿真方法能够在结果的5%范围内预测 uddrag力从全面测量和推断的模型 udtest数据得出。此外,它已被证明可以正确预测稳定和不稳定的浅水/淡水影响。此外,尾板尾部的通风过程已通过实验进行了验证,并且经过部分通气的尾板的停滞区域中的流动特征已被确定为不脱落的形涡流。对于双体船来说,其船体细长比为11到13,船体长度为150 m,在轻度排水时,对于20至35节的速度提供了最高的运输效率,而对于中型和轻型,则为170 m和190 m,可以实现最低的阻力。最后,将计算结果与当代大型和快速双体船的载重量相当,并以相同的速度行驶时,如果将船体的长度设为150 m而不是110 m,则可以节省多达40%的燃油。用过的。这表明,大型中型/双体船有望成为成功的未来快速海上运输的省油替代品。

著录项

  • 作者

    Haase M;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号