首页> 外文OA文献 >A Global optimization stochastic algorithm for head motion stabilization during quadruped robot locomotion
【2h】

A Global optimization stochastic algorithm for head motion stabilization during quadruped robot locomotion

机译:四足机器人运动过程中头部运动稳定的全局优化随机算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Visually-guided locomotion is important for autonomous robotics. However, there are several di culties,for instance, the robot locomotion induces head shaking that constraints stable image acquisition and thepossibility to rely on that information to act accordingly. In this work, we propose a combined approachbased on a controller architecture that is able to generate locomotion for a quadruped robot and a geneticalgorithm to generate head movement stabilization. The movement controllers are biologically inspiredin the concept of Central Pattern Generators (CPGs) that are modelled based on nonlinear dynamicalsystems, coupled Hopf oscillators. This approach allows to explicitly specify parameters such as ampli-tude, o set and frequency of movement and to smoothly modulate the generated oscillations accordingto changes in these parameters. Thus, in order to achieve the desired head movement, opposed to theone induced by locomotion, it is necessary to appropriately tune the CPG parameters. Since this is anon-linear and non-convex optimization problem, the tuning of CPG parameters is achieved by using aglobal optimization method. The genetic algorithm searches for the best set of parameters that generatesthe head movement in order to reduce the head shaking caused by locomotion. Optimization is doneo ine according to the head movement induced by the locomotion when no stabilization procedure wasperformed. In order to evaluate the resulting head movement, a tness function based on the Euclidiannorm is investigated. Moreover, a constraint handling technique based on tournament selection was im-plemented. Experimental results on a simulated AIBO robot demonstrate that the proposed approachgenerates head movement that reduces signi cantly the one induced by locomotion.
机译:视觉引导的运动对于自主机器人至关重要。然而,存在多种困难,例如,机器人的运动引起摇头,这限制了稳定的图像获取,并且可能依赖于该信息来采取相应的行动。在这项工作中,我们提出了一种基于控制器体系结构的组合方法,该方法能够为四足机器人产生运动,并通过遗传算法产生稳定的头部运动。运动控制器的灵感来自中央模式发生器(CPG)的概念,该模型基于非线性动力系统,耦合的Hopf振荡器进行建模。这种方法可以明确指定诸如振幅,运动的集合和频率之类的参数,并根据这些参数的变化平滑地调制生成的振荡。因此,为了实现所需的头部运动,与由运动引起的头部运动相反,有必要适当地调整CPG参数。由于这是一个非线性且非凸的优化问题,因此可以通过使用全局优化方法来实现CPG参数的调整。遗传算法搜索生成头部运动的最佳参数集,以减少运动引起的头部晃动。当未执行稳定过程时,根据运动引起的头部运动进行优化。为了评估最终的头部运动,研究了基于Euclidiannorm的tness函数。此外,基于比赛选择的约束处理技术得以实现。在模拟的AIBO机器人上的实验结果表明,所提出的方法可产生头部运动,从而显着减少运动引起的头部运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号