首页> 外文OA文献 >Computational methods for discovering functional modules from protein interaction networks
【2h】

Computational methods for discovering functional modules from protein interaction networks

机译:从蛋白质相互作用网络发现功能模块的计算方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent studies have suggested that molecular interaction networks within cells could be decomposed into different subnetworks of molecules that are involved in common biological processes. Such subnetworks are known as pathways, protein complexes or, in general, as functional modules. Many computational methods have been developed to discover functional modules based on various hypotheses. For example, network motifs are abundant subnetworks in natural networks but not random networks with similar global properties. Networks motifs have been utilized for comparing protein-protein interaction (PPI) networks of various organisms and for assessing the random models in terms of capturing the global and local properties of PPI networks. In another example, subnetwork markers are connected subnetworks from PPI networks in which member gene expressions correlate with labels of the samples. Such subnetwork markers could be used as predictors for phenotype of the samples such as the disease statuses of the patients. In this dissertation, I first present novel computational methods for discovering network motifs that use the confidence scores from protein interactions. Since there are many false positives and false negatives in the current binary PPI networks, utilizing confidence scores could result in better network motifs. I have used this algorithm to compare PPI networks of prokaryotic unicellular, eukaryotic unicellular and multicellular organisms. Later, I present two efficient and optimal computational approaches for identifying subnetwork markers. The first one utilizes confidence scores from PPIs. And the second one is a randomized algorithm for discovering the subnetworks markers with the best predicting performance. I have applied these algorithms to predict disease statuses of colon cancer and breast cancerpatients and treatment outcomes of a combinatory therapy for a breast cancer study.
机译:最近的研究表明,细胞内的分子相互作用网络可分解为参与共同生物学过程的分子的不同子网络。这样的子网被称为途径,蛋白质复合物或通常被称为功能模块。已经开发了许多计算方法以基于各种假设来发现功能模块。例如,网络主题是自然网络中的丰富子网络,但不是具有相似全局特性的随机网络。网络基序已被用于比较各种生物的蛋白质相互作用(PPI)网络,并在捕获PPI网络的全局和局部特性方面评估随机模型。在另一个例子中,子网标记是来自PPI网络的连接的子网,其中成员基因表达与样品的标记相关。此类子网标记可以用作样本表型(例如患者的疾病状况)的预测指标。在本文中,我首先提出了一种新颖的计算方法,该方法利用蛋白质相互作用的置信度得分来发现网络基序。由于当前的二进制PPI网络中存在许多假阳性和假阴性,因此利用置信度得分可能会产生更好的网络图案。我已经使用此算法来比较原核单细胞,真核单细胞和多细胞生物的PPI网络。后来,我提出了两种有效和最佳的计算方法来识别子网标记。第一个利用PPI的置信度得分。第二种是一种随机算法,用于发现具有最佳预测性能的子网标记。我已将这些算法应用于预测结肠癌和乳腺癌患者的疾病状况以及针对乳腺癌研究的联合疗法的治疗结果。

著录项

  • 作者

    Dao Phuong;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号