首页> 外文OA文献 >In Situ Modeling of Chemical Membrane Degradation in Polymer Electrolyte Fuel Cells
【2h】

In Situ Modeling of Chemical Membrane Degradation in Polymer Electrolyte Fuel Cells

机译:聚合物电解质燃料电池中化学膜降解的原位模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Chemical membrane degradation is a major limiting factor for polymer electrolyte fuel cell (PEFC) durability and lifetime. While the effects of chemical membrane degradation are characterized in the literature, the underlying mechanism is not fully understood. This motivates the development of a comprehensive in situ chemical membrane degradation model addressed in this work to determine the linkages between the membrane electrolyte assembly (MEA) macroscopic phenomena, in situ operating conditions, and the temporal membrane degradation process. Chemical membrane degradation through OH radical attack on the membrane, where the radical is produced by decomposition of hydrogen peroxide in the presence of contaminants such as Fe2+, is comprehensively investigated. A redox cycle of iron ions is discovered within the MEA which sustains the Fe2+ concentration in the membrane and results in the most severe chemical degradation at open circuit voltage (OCV). The cycle is suppressed at lower cell voltages leading an exponential decrease in Fe2+ concentration in the membrane and associated membrane degradation rate, which suggests that intermediate cell voltage operation would efficiently mitigate chemical membrane degradation and extend the fuel cell lifetime. Effectiveness of membrane additives (e.g., ceria) in mitigating the membrane degradation is explored. At high cell voltages, abundant Ce3+ ions are available in the membrane to quench hydroxyl radicals which is the primary mitigation mechanism observed at OCV conditions. However, the mitigation is suppressed at low cell voltages, where electromigration drives Ce3+ ions into the cathode catalyst layer (CL). Without an adequate amount of Ce3+ in the membrane, the hydroxyl radical scavenging is significantly reduced. Moreover, the modeling results reveal that proton starvation may occur in the cathode CL due to local Ce3+ accumulation and associated reductions in proton conductivity and oxygen reduction kinetics. Significant performance tradeoffs in the form of combined ohmic and kinetic voltage losses are therefore evident. A lower initial Ce3+ concentration is demonstrated to mitigate voltage losses without compromising membrane durability at high cell voltages. However, the harmful Fe2+ concentration in the membrane increases with the Ce3+ concentration, which suggests that ceria-supported MEAs can experience higher rates of degradation than baseline MEAs at low cell voltages. Strategic MEA design is recommended in order to ensure membrane durability at low cell voltages.
机译:化学膜降解是聚合物电解质燃料电池(PEFC)耐久性和寿命的主要限制因素。虽然在文献中已经描述了化学膜降解的影响,但其潜在机理尚未完全清楚。这激发了本工作中解决的全面的原位化学膜降解模型的发展,以确定膜电解质组件(MEA)宏观现象,原位操作条件和临时膜降解过程之间的联系。全面研究了OH自由基对膜的化学降解,其中自由基是在污染物(例如Fe2 +)存在下通过过氧化氢的分解产生的。在MEA中发现了铁离子的氧化还原循环,该循环维持膜中的Fe2 +浓度,并在开路电压(OCV)下导致最严重的化学降解。在较低的电池电压下,该循环受到抑制,导致膜中Fe2 +浓度和相关的膜降解速率呈指数下降,这表明中等电池电压运行将有效缓解化学膜降解并延长燃料电池寿命。探索了膜添加剂(例如二氧化铈)在减轻膜降解方面的有效性。在高电池电压下,膜中有大量Ce3 +离子可用来淬灭羟基自由基,这是在OCV条件下观察到的主要缓解机制。但是,在低电池电压下,电迁移将Ce3 +离子驱动到阴极催化剂层(CL)中,抑制作用得到抑制。在膜中没有足够量的Ce3 +时,羟基自由基的清除作用将显着降低。此外,建模结果表明,由于局部Ce3 +的积累以及质子传导率和氧还原动力学的降低,质子饥饿可能发生在阴极CL中。因此,以欧姆和动电压损失的组合形式进行的重大性能折衷是显而易见的。较低的Ce3 +初始浓度可减轻电压损失,同时又不会损害高电池电压下的膜耐久性。但是,膜中有害的Fe2 +浓度随Ce3 +浓度的增加而增加,这表明在低电池电压下,二氧化铈负载的MEA比基线MEA的降解速率更高。建议采用策略性MEA设计,以确保低电池电压下的膜耐用性。

著录项

  • 作者

    Wong Ka Hung;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号