首页> 外文期刊>Journal of power sources >Physical modeling of chemical membrane degradation in polymer electrolyte membrane fuel cells: Influence of pressure, relative humidity and cell voltage
【24h】

Physical modeling of chemical membrane degradation in polymer electrolyte membrane fuel cells: Influence of pressure, relative humidity and cell voltage

机译:聚合物电解质膜燃料电池中化学膜降解的物理模型:压力,相对湿度和电池电压的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Chemical membrane degradation causes deterioration of critical membrane properties such as gas separation which finally causes failure of polymer electrolyte membrane fuel cells (PEMFCs). In order to identify the underlying physical processes, a physics-based model of chemical membrane degradation is implemented into the novel numerical framework NEOPARD-X [1]. The existing 2D PEMFC model is extended to incorporate the mechanisms of hydrogen peroxide formation and reduction, a redox cycle of iron contaminants in the ionomer phase, radical formation due to Fenton's chemistry and radical attack on the polymer structure. Unzipping of the polymer backbone and scission of the side chains are considered as degradation mechanism. The degradation model is validated against experimental data obtained in accelerated stress tests (ASTs). From theoretical considerations, the influence of chemical membrane degradation on the cell performance is revealed. The influence of pressure, relative humidity and cell voltage on the chemical degradation is rationalized. The operating conditions strongly influence the kinetics and spacial distribution of the membrane degradation. Degradation is found to be most pronounced at elevated pressure, high relative humidity and high cell voltage close to the interface of anode catalyst layer and PEM.
机译:化学膜降解会导致关键的膜性能下降,例如气体分离,最终导致聚合物电解质膜燃料电池(PEMFC)失效。为了识别潜在的物理过程,在新的数值框架NEOPARD-X [1]中实现了基于物理的化学膜降解模型。现有的2D PEMFC模型已扩展为包含过氧化氢的形成和还原,离聚物相中铁污染物的氧化还原循环,由于Fenton的化学作用而形成的自由基以及对聚合物结构的自由基侵蚀的机理。聚合物主链的解压缩和侧链的断裂被认为是降解机理。根据加速应力测试(AST)中获得的实验数据验证了退化模型。从理论上的考虑,揭示了化学膜降解对电池性能的影响。合理地考虑了压力,相对湿度和电池电压对化学降解的影响。操作条件强烈影响膜降解的动力学和空间分布。发现在靠近阳极催化剂层和PEM的界面的高压,高相对湿度和高电池电压下,降解最明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号