首页> 外文OA文献 >Assessing Parameter, Precipitation, and Predictive Uncertainty in a Distributed Hydrological Model Using Sequential Data Assimilation with the Particle Filter
【2h】

Assessing Parameter, Precipitation, and Predictive Uncertainty in a Distributed Hydrological Model Using Sequential Data Assimilation with the Particle Filter

机译:使用带粒子滤波的序贯数据同化方法评估分布式水文模型中的参数,降水和预测不确定性

摘要

Sequential data assimilation techniques offer the possibility to handle different sources of uncertainty explicitly in hydrological models and hence improve their predictive capabilities. Amongst the different techniques, sequential Monte Carlo or particle filter methods offer the capability to handle nonlinear/non-Gaussian state-space models while preserving the spatial variability of updated state variables, both desirable features when assimilating data in distributed hydrological models. In this work we apply the residual resampling particle filter to assess parameter, precipitation, and predictive uncertainty in the distributed rainfall-runoff model LISFLOOD. We compare estimated posterior parameter distributions with results of the Shuffled Complex Evolution Metropolis global optimization algorithm obtained using identical input data for the Meuse catchment. Both approaches result in well identifiable posterior parameter distributions and provide a good fit to the observed hydrograph. The resulting posterior distributions, however, vary considerably in shape, location and scale. This illustrates that the concept of equifinality not only applies to simple conceptual models but is also valid for complex, physically-based, distributed models. We show that considering additionally precipitation uncertainty not only increases the spread of the posterior parameter distributions but may also result in a completely different location parameter and/or shape of the distributions. The analysis of precipitation uncertainty reveals that there is no systematic bias in the precipitation grids. In comparison to other studies where a uniform precipitation is applied, the posterior precipitation error variance is significantly reduced when accounting for spatial variability. Furthermore, considering precipitation and parameter uncertainty leads to an improvement in predictive capabilities. However, results also indicate that model structural uncertainty may be equally important, in spite of using a physically-based distributed hydrological model that should theoretically provide an improved description of the hydrological system dynamics.
机译:顺序数据同化技术为水文模型中明确处理不同不确定性源提供了可能性,从而提高了其预测能力。在不同的技术中,顺序蒙特卡洛或粒子滤波方法提供了处理非线性/非高斯状态空间模型的能力,同时保留了更新后的状态变量的空间变异性,这都是在分布式水文模型中同化数据时的理想功能。在这项工作中,我们应用残差重采样粒子滤波器来评估分布式降雨-径流模型LISFLOOD中的参数,降水和预测不确定性。我们将估计的后验参数分布与使用相同的Meuse流域输入数据获得的Shuffled Complex Evolution Metropolis全局优化算法的结果进行比较。两种方法都可以很好地识别后验参数分布,并且可以很好地拟合观测到的水文图。但是,产生的后部分布在形状,位置和比例上有很大不同。这说明了等价性概念不仅适用于简单的概念模型,而且适用于基于物理的复杂分布式模型。我们表明,另外考虑降水的不确定性不仅会增加后验参数分布的散布,而且还可能导致完全不同的位置参数和/或分布形状。降水不确定性分析表明,降水网格中没有系统性偏差。与采用均匀降水的其他研究相比,考虑到空间变化时,后降水误差方差显着降低。此外,考虑降水和参数不确定性会导致预测能力的提高。但是,结果也表明,尽管使用了基于物理的分布式水文模型,但理论上应该提供对水文系统动力学的改进描述,但是模型结构的不确定性可能同样重要。

著录项

  • 作者

    SALAMON Peter; FEYEN Luc;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号