首页> 外文OA文献 >Uncertainty Assessment of Hydrologic Model States and Parameters: Sequential Data Assimilation Using the Particle Filter
【2h】

Uncertainty Assessment of Hydrologic Model States and Parameters: Sequential Data Assimilation Using the Particle Filter

机译:水文模型状态和参数的不确定性评估:使用粒子滤波器的顺序数据同化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Two elementary issues in contemporary Earth system science and engineering are (1) the specification of model parameter values which characterize a system and (2) the estimation of state variables which express the system dynamic. This paper explores a novel sequential hydrologic data assimilation approach for estimating model parameters and state variables using particle filters (PFs). PFs have their origin in Bayesian estimation. Methods for batch calibration, despite major recent advances, appear to lack the flexibility required to treat uncertainties in the current system as new information is received. Methods based on sequential Bayesian estimation seem better able to take advantage of the temporal organization and structure of information, so that better compliance of the model output with observations can be achieved. Such methods provide platforms for improved uncertainty assessment and estimation of hydrologic model components, by providing more complete and accurate representations of the forecast and analysis probability distributions. This paper introduces particle filtering as a sequential Bayesian filtering having features that represent the full probability distribution of predictive uncertainties. Particle filters have, so far, generally been used to recursively estimate the posterior distribution of the model state; this paper investigates their applicability to the approximation of the posterior distribution of parameters. The capability and usefulness of particle filters for adaptive inference of the joint posterior distribution of the parameters and state variables are illustrated via two case studies using a parsimonious conceptual hydrologic model.
机译:当代地球系统科学和工程学中的两个基本问题是:(1)表征系统特征的模型参数值;(2)估算表示系统动态的状态变量。本文探索了一种新颖的顺序水文数据同化方法,用于使用粒子滤波器(PF)估算模型参数和状态变量。 PF起源于贝叶斯估计。尽管最近取得了重大进展,但用于批次校准的方法似乎缺乏在接收新信息时处理当前系统中不确定性所需的灵活性。基于顺序贝叶斯估计的方法似乎能够更好地利用信息的时间组织和结构,从而可以更好地将模型输出与观察结果相符合。这些方法通过提供预报和分析概率分布的更完整和准确的表示形式,提供了用于改进不确定性评估和水文模型成分估计的平台。本文介绍了粒子滤波作为顺序贝叶斯滤波,其特征代表了预测不确定性的全部概率分布。到目前为止,一般都使用粒子滤波器来递归估计模型状态的后验分布。本文研究了它们在参数后验分布近似中的适用性。通过使用简约概念性水文模型的两个案例研究,说明了粒子过滤器自适应推断参数和状态变量的联合后验分布的能力和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号