首页> 外文期刊>Water resources research >Disentangling uncertainties in distributed hydrological modeling using multiplicative error models and sequential data assimilation
【24h】

Disentangling uncertainties in distributed hydrological modeling using multiplicative error models and sequential data assimilation

机译:使用乘法误差模型和顺序数据同化方法消除分布式水文模型中的不确定性

获取原文
获取原文并翻译 | 示例
           

摘要

The quantification of uncertainty in hydrologic modeling is a difficult task, as it arises from a combination of physical measurement errors, errors due to different temporal or spatial scales, and errors in the mathematical description of hydrologic processes. This paper presents an approach to infer during a calibration process the statistical properties of the principal error sources, namely, parameter, precipitation, potential evapotranspiration, and structural model uncertainty, by means of sequential data assimilation (SDA). We perform SDA using a particle filter that combines stochastic universal resampling and kernel smoothing with local shrinkage to improve its performance in comparison to traditional filters. Precipitation, potential evapotranspiration, and structural model uncertainty are incorporated into the calibration process using multiplicative error models. The particle filter is applied to a large-scale distributed model of the Rhine River to demonstrate its usefulness when characterizing error sources. Diagnostic checks and a synthetic case study show that the posterior distributions can be considered as reliable. The posterior multiplier distributions are used to identify whether a systematic bias exists and to illustrate that uncertainty from those sources can be reduced significantly in comparison to the prior assumptions adopted. Evaluating the predictive uncertainty shows that the overall error in hydrologic models is sufficiently characterized by the different error sources used here. Results indicate, however, that the assumptions taken in the output error model and the simplifications of the multiplicative models do not always hold in practice. Therefore, more sophisticated error models and a better quantification of the discharge measurement error are required to further improve characterization of error sources.
机译:水文建模中不确定性的量化是一项艰巨的任务,因为它是由物理测量误差,由于不同时空尺度引起的误差以及水文过程数学描述中的误差共同引起的。本文提出了一种在校准过程中通过顺序数据同化(SDA)来推断主要误差源的统计属性(即参数,降水,潜在蒸散量和结构模型不确定性)的方法。我们使用粒子滤波器执行SDA,该粒子滤波器将随机通用重采样和内核平滑与局部收缩相结合,与传统滤波器相比,可提高其性能。使用乘性误差模型将降水,潜在的蒸散量和结构模型的不确定性纳入校准过程。粒子滤波器应用于莱茵河的大规模分布式模型,以证明其在表征误差源时的有用性。诊断检查和综合案例研究表明,后验分布可以被认为是可靠的。后乘数分布用于确定是否存在系统偏差,并说明与采用的先前假设相比,这些来源的不确定性可以大大降低。对预测不确定性的评估表明,水文模型中的总体误差已被此处使用的不同误差源充分表征。然而,结果表明,在输出误差模型中采用的假设和乘法模型的简化在实践中并不总是成立。因此,需要更复杂的误差模型和对放电测量误差的更好量化,以进一步改善误差源的特性。

著录项

  • 来源
    《Water resources research》 |2010年第12期|p.W12501.1-W12501.20|共20页
  • 作者

    Peter Salamon; Luc Feyen;

  • 作者单位

    Land Management and Natural Hazards Unit, Institute for Environment and Sustainability, DG Joint Research Centre European Commission, Via Enrico Fermi 2749, TP 261, I-21027 Ispra;

    Land Management and Natural Hazards Unit, Institute for Environment and Sustainability, DG Joint Research Centre European Commission, Via Enrico Fermi 2749, TP 261, I-21027 Ispra;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号