首页> 外文学位 >Assessing impacts of precipitation and parameter uncertainty on distributed hydrologic modeling.
【24h】

Assessing impacts of precipitation and parameter uncertainty on distributed hydrologic modeling.

机译:评估降水和参数不确定性对分布式水文模型的影响。

获取原文
获取原文并翻译 | 示例

摘要

Distributed hydrologic models, based on conservation laws, simulate the flow of water over and through the land surface in response to forcing from precipitation, transpiration, and evaporation. Conservation laws provide a physical basis for runoff generation that are dependent on the accurate specification of initial conditions, boundary conditions, and representative parameter estimates which control the model's performance. The main objective of this dissertation is to develop and test a method for calibration of a distributed hydrologic model in the presence of rainfall input uncertainty that utilizes the physics of runoff generation processes.;The main hypothesis tested is that a model calibrated using spatially distributed (SD) parameter adjustments will have less prediction error than a model calibrated by a spatially averaged (SA) parameter adjustment. A Mann Whitney Wilcoxon (MWW) rank sum hypothesis test is used to test the statistical significance. The results of the MWW rank sum hypothesis test show the mean of RMSE from the model calibrated by SD adjustments is less than the RMSE from the model calibrated using the SA parameter adjustment. The Nash Sutcliffe Efficiency of the SD calibrated model is also consistently higher than the SA calibrated model. These results are consistent at both the calibration gauge and at the interior gauge point. Thus, a spatially distributed parameter adjustment technique leads to a reduction in prediction error compared with the spatially averaged parameter adjustment technique.
机译:基于保护规律的分布式水文模型,模拟了降水,蒸腾作用和蒸发的强迫作用,从而模拟了水在陆地表面的流动。守恒定律为径流的产生提供了物理基础,这取决于初始条件,边界条件和控制模型性能的代表性参数估计值的准确规定。本论文的主要目的是开发和测试一种在降雨输入不确定的情况下利用径流产生过程的物理原理对分布式水文模型进行标定的方法。;主要假设是使用空间分布( SD)参数调整将比通过空间平均(SA)参数调整所校准的模型具有较小的预测误差。曼惠特尼·威尔科克森(MWW)秩和假设检验用于检验统计显着性。 MWW秩和假设检验的结果表明,通过SD调整校准的模型的RMSE平均值小于使用SA参数调整校准的模型的RMSE。 SD校准模型的Nash Sutcliffe效率也始终高于SA校准模型。这些结果在校准仪表和内部仪表点上都是一致的。因此,与空间平均参数调整技术相比,空间分布参数调整技术导致预测误差的减小。

著录项

  • 作者

    Looper, Jonathan Paul.;

  • 作者单位

    The University of Oklahoma.;

  • 授予单位 The University of Oklahoma.;
  • 学科 Hydrology.;Water Resource Management.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号